

Revealing Disocclusions in Temporal View Synthesis through Infilling Vector Prediction Vijayalakshmi Kanchana Nagabhushan Somraj Suraj Yadwad **Rajiv Soundararajan** Indian Institute of Science, Bengaluru, India.

Egomotion-Aware Temporal View Synthesis

Predict a future video frame from past frames using depth and egomotion.

Camera motion disoccludes previously hidden scene content - needs to be infilled.

Contributions:

- Infilling vector prediction network for disocclusion infilling with temporal and depth guidance.
- New challenging dataset- IISc-Virtual Environment Exploration Dataset (IISc-VEED).

Infilling vectors:

- Points from known region to disoccluded region in the warped frame.
- Infill disoccluded pixels by copying intensities using the infilling vectors.

Infilling Vector Prediction (IVP)

- Given frame f_n , depth d_n , and the relative camera transformation T from f_n to f_{n+1} , we use projective geometry based warping to warp f_n to f_{n+1} - this creates disocclusions.
- We input the temporal and depth priors to a U-Net and predict infilling vectors.
- Training loss: $\mathcal{L} = \lambda_1 \mathcal{L}_{MSE}(f_{n+1}^i, f_{n+1}) + \lambda_2 \mathcal{L}_{SSIM}(f_{n+1}^i, f_{n+1}) + \lambda_3 \mathcal{L}_{smooth}(a_{n+1}, b_{n+1})$ where mean squared error (\mathcal{L}_{MSE}) and structural similarity (\mathcal{L}_{SSIM}) are computed between the infilled and true frames and $\mathcal{L}_{ ext{smooth}}$ is the edge-aware smoothness loss on predicted infilling vectors.

Temporal and Depth Guidance

Temporal guidance:

- Warp f_{n-2} to view of f_n using camera pose.
- Given that warped f_{n-2} is infilled to get true f_n , we seek to infill warped f_n similarly.
- Estimate the infilling vectors in warped f_{n-2} and use it as temporal prior.

pixel with least difference compared to true intensity

Nearest known pixels in four cardinal directions

Estimated Infilling Vector

Disoccluded ' region

 Infilled region

Predicted infilling vectors

Infilled frame

Depth Guidance:

- Disocclusions typically belong to background regions.
- Provide normalized depth map as input.
- This guides the network to copy intensities from the relative backgrounds.

Cityscape

Seaport

- 800 videos, 1920x1080, 30fps, 12 frames per video.
- Videos of indoor and outdoor scenes, rendered with Blender.
- Camera trajectories chosen to be realistic and produce challenging disocclusions.
- Provide RGB frames, depth, camera extrinsics and intrinsics.

 f_n warped to f_{n+1}

pixel at (x, y)

 f_{n-2} warped to f_n

true intensity at (x, y)

true f_n

Infilled f_{n+1}

true f_n

Kitchen

Bedroom

Benchmarks:

- Novel View Synthesis: **SynSin** [1]

[1] Wiles et al. "Synsin: End-to-end view synthesis from a single image". CVPR 2020.

RESULTS

• Depth Image-Based Rendering: Cho et al. [2] (Input is warped frame) • Image Inpainting: EdgeConnect [3] (Input is warped frame)

Datasets: Our IISc-VEED dataset and the SceneNet RGB-D [4]

Importance of Temporal and Depth Guidance

REFERENCES

[2] Cho et al. "Hole filling method for depth image based rendering based on boundary decision". IEEE Signal Processing Letters, 2017. [3] Nazeri et al. "Edgeconnect: Structure guided image inpainting using edge prediction". ICCVW 2019.

[4] McCormac et al. "Scenenet RGB-D: Can 5m synthetic images beat generic imagenet pre-training on indoor segmentation?". ICCV 2017.

Acknowledgements: This work was supported by a grant from Qualcomm.