
Predict a future video frame from past frames using depth and egomotion. Benchmarks:
● Novel View Synthesis: SynSin [1]
● Depth Image-Based Rendering: Cho et al. [2] (Input is warped frame)
● Image Inpainting: EdgeConnect [3] (Input is warped frame)
Datasets: Our IISc-VEED dataset and the SceneNet RGB-D [4]

[1] Wiles et al. “Synsin: End-to-end view synthesis from a single image”. CVPR 2020.
[2] Cho et al. “Hole filling method for depth image based rendering based on boundary decision”. IEEE Signal Processing Letters, 2017.
[3] Nazeri et al. “Edgeconnect: Structure guided image inpainting using edge prediction”. ICCVW 2019.
[4] McCormac et al. “Scenenet RGB-D: Can 5m synthetic images beat generic imagenet pre-training on indoor segmentation? ”. ICCV 2017.
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RESULTSEgomotion-Aware Temporal View Synthesis

Infilling Vector Prediction (IVP)

Temporal and Depth Guidance

IISc-VEED: New Dataset

Camera motion disoccludes previously hidden scene content - needs to be infilled.

Infilling vectors:
● Points from known region to disoccluded 

region in the warped frame.
● Infill disoccluded pixels by copying 

intensities using the infilling vectors. 

● Given frame    , depth    , and the relative camera transformation     from    to      , we use 
projective geometry based warping to warp    to       - this creates disocclusions.

● We input the temporal and depth priors to a U-Net and predict infilling vectors.
● Training loss: 

where mean squared error (       ) and structural similarity (        ) are computed between 
the infilled and true frames and            is the edge-aware smoothness loss on predicted 
infilling vectors.

Temporal guidance:
● Warp       to view of     using camera pose.
● Given that warped       is infilled to get true    , 

we seek to infill warped    similarly.
● Estimate the infilling vectors in warped       and 

use it as temporal prior.

● 800 videos, 1920x1080, 30fps, 12 frames per video.
● Videos of indoor and outdoor scenes, rendered with Blender.
● Camera trajectories chosen to be realistic and produce challenging disocclusions.
● Provide RGB frames, depth, camera extrinsics and intrinsics.

Contributions:
● Infilling vector prediction network for disocclusion infilling with temporal and depth guidance.
● New challenging dataset- IISc-Virtual Environment Exploration Dataset (IISc-VEED).

?
      warped to    true    

    warped to      Infilled      

Depth Guidance:
● Disocclusions typically belong to background regions.
● Provide normalized depth map as input.
● This guides the network to copy intensities from the relative backgrounds.

Qualitative comparisons on IISc-VEED and SceneNet RGB-D
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Quantitative comparisons on IISc-VEED and SceneNet RGB-D

Importance of Temporal 
and Depth Guidance
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