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Sparse Input NeRF

• NeRF [1] typically requires hundreds of images per scene.
• Produces severe distortions when trained with few images.
• Cause: Under-constrained volume rendering equations.

NeRF - Dense Input Views NeRF - Sparse Input Views

[1] Mildenhall et al., “Representing Scenes as Neural Radiance Fields for View Synthesis”, ECCV 2020.
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Related Work

Our solution: learn without pre-training scene-specific depth supervision. 
  — train augmented/helper models along with the NeRF model.
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Analyzing NeRF Limitations

NeRF learns undesired depth discontinuities due to 
high positional encoding.

NeRF changes colour to over-fit observations by 
exploiting its ability to learn view-dependent colour.

Floater artifacts Duplication artifacts (shape-radiance ambiguity)

Common cause: High capability of NeRF in regions where it is not necessary.
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Regularizing with Simpler Solutions
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Mitigating Floaters with Simpler Solutions
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(lower positional encoding)
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Depth edges are sharp, but 
contains floaters

Floaters reduced, but depth 
edges are not sharp

Floaters reduced while 
retaining sharp depth edges
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Mitigating Shape-Radiance Ambiguity
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(View-independent color)
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Observe the change in position 
of the object on the table

Does not support specularity
Object does not change position 

while supporting specularity
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• Depth with higher similarity between reprojected patches  more reliable.

• Use the more reliable depth to supervise the other.

→

Reliable Depth Supervision
Input view

Nearest input view
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Qualitative Results

SimpleNeRF - 3 input views NeRF - 54 input views
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Qualitative Results - Depth Estimation

Significant improvement in estimating depth of the scene
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Quantitative Results - LPIPS
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[4] Mildenhall et al., “Local Light Field Fusion”, SIGGRAPH 2019.​ 
[5] Zhou et al., “Stereo Magnification: Learning View Synthesis using Multiplane Images”, SIGGRAPH 2018.

Lower LPIPS score indicates better quality
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Conclusion

• Design of lower capability helper models biased towards simpler solutions.
• Reducing positional encoding to mitigate floaters.
• View-independent colour to reduce shape-radiance ambiguity.

• Framework extensible to any volumetric model.

For paper, code 
and more, visit 

https://
nagabhushansn95.
github.io/
publications/2023/
SimpleNeRF.html
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