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• NeRF [1] typically requires hundreds of images per scene.

• Produces severe distortions when trained with few images.

• Cause: Under-constrained volume rendering equations.
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• Obtains sparse depth from Structure 
from Motion (SfM).


• Supervises depth estimated by 
NeRF using SfM depth.


• Accurate but supervision at sparse 
keypoints only.
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Real Estate - 10K [4] NeRF - LLFF [5]Databases:

• Real Estate-10K [4]

• 5 scenes, indoor & outdoor

• NeRF-LLFF [5]

• 8 scenes, challenging scenes


Evaluation Measure: LPIPS
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• Completes sparse depth using pre-
trained neural network.


• Dense depth supervision provided at 
every pixel.


• Suffers from generalization issues when 
generating prior on novel scenes.

• There is a need for dense and reliable prior.

- We introduce visibility prior.

Visibility Prior3

• Visibility prior indicates if a pixel in primary 
view is visible in secondary view.


• We constrain the visibility learned by 
NeRF with this visibility prior.
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Training NeRF with Visibility Prior
Visibility of 3D point in primary viewTi ←
Visibility of 3D point in secondary viewT′￼

i ←Ti = 1; T′￼

i = 0
Ti = 1; T′￼

i = 1

ℒvip = ∥τ′￼− t′￼∥1 ⊙ 1{τ′￼=1}
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How to compute ?

• Naive approach: Shoot ray 

from secondary view.

-   MLP queries per pixel 

instead of .

• Our approach: NeRF to learn 

view-dependent visibility .
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Sparse depth loss [2] in addition to ℒvip
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Why Visibility Prior?

• Related to relative depth.

• Easier to estimate.

• Dense and Reliable.

• Estimated without neural networks.

average visibility of the 
pixel in secondary view

Visibility prior loss:
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Take home message: Add visibility prior to any NeRF model 
to train it with sparse views.

Comparison with State-of-the-art Sparse Input NeRFs

https://nagabhushansn95.github.io/publications/2023/ViP-NeRF.html

Visibility prior ∈ {0,1}τ′￼ ←


