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NeRF with Sparse Inputs @ Visibility Prior Estimation @ Evaluation and Comparisons
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(6) Training NeRF with Visibility Prior
I; < Visibility of 3D point in primary view
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. Visibility prior indicates if a pixel in primary How to compute 77?2

view Is visible in secondary view.
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T. < Visibility of 3D point in secondary view
T' < Visibility prior € {0,1}

* Naive approach: Shoot ray
from secondary view.
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e Qur approach: NeRF to learn
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