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ABSTRACT

Novel view synthesis involves generating unseen perspectives
of a scene based on videos captured from limited viewpoints.
Learning scene representations of such videos containing dy-
namic scene elements introduces several challenges in model-
ing the motion. Existing models typically require dense view-
point coverage to produce high-quality renderings, and their
performance degrades significantly when the number of view-
points is reduced. In this work, we explore the challenges
associated with volumetric motion modeling for synthesizing
novel views of dynamic scenes from only a few fixed view-
points. Specifically, we address the limitations of unidirec-
tional motion models, which often result in a many-to-one
mapping of scene points. We enforce cyclic flow consistency
with the help of bidirectional motion fields to achieve superior
reconstruction of novel views of dynamic scenes. Moreover,
the bi-directional motion field design allows us to track object
motion in the synthesized views.

Index Terms— Dynamic novel view synthesis, motion
modeling, dynamic radiance fields, volume rendering

1. INTRODUCTION

The task of generating novel views of a scene from images
or videos captured from different viewpoints has a variety of
applications, including virtual and augmented reality, sports
streaming, and autonomous driving. This is particularly chal-
lenging for dynamic scenes which contain moving objects,
even when the scene is captured using multiple cameras. Re-
cent work on dynamic view synthesis addresses this problem
by modeling the radiance fields using neural networks [1],
low-rank approximations of 4D grids [2, 3] and 3D Gaus-
sian splatting (3DGS) [4, 5, 6]. However, these models re-
quire the scene to be captured from a large number of camera
viewpoints to train these models for the given scene. In this
work, we focus on learning dynamic scene radiance fields us-
ing only a sparse set of input cameras.

One of the major challenges with existing grid-based
models is the lack of explicit motion modeling. Although
3D Gaussian splatting methods allow for motion modeling,
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they rely on rich initialization, which is hard to obtain in the
few-shot setting. To constrain the radiance field model in
the sparse set-up, RF-DeRF [7] builds on K-planes [2] and
introduces explicit motion fields. Such fields are constrained
using sparse and dense motion priors to obtain superior re-
constructions. However, there are two main drawbacks to
this method. Firstly, the motion field maps 3D points at a
time instant t to points in a canonical radiance field space to
model motion. However, such a model leads to a many-to-
one mapping, where adjacent points with small variations in
intensities can get mapped to the same point. This can cause
a loss of fine-grained variations of the details. Secondly,
unidirectional motion modeling to a canonical space does not
allow the visualization of the learned flow across frames. The
visualization of such flow is an important feature to enable
motion editing-based applications such as [8].

To address these shortcomings, we introduce a pair of
bidirectional motion fields: a forward motion field that maps
3D points at any time instant to the canonical volume/space
and a backward motion field that maps points in the canon-
ical volume to a particular 3D point given the time instant.
We enforce a cyclic flow consistency loss that allows a mov-
ing point to return to itself when subjected to both these fields.
Such learning of bidirectional motion fields not only helps im-
prove the motion modeling and novel view synthesis, but also
allows one to visualize how points move in 3D from one time
instant to another. The backward motion field is only used
during the training stage and only the forward motion field is
used at inference time. We refer to our model as bidirectional
flow enabled deformable radiance fields (BF-DeRF).

The main contributions of the paper are as follows:

• We introduce bidirectional motion fields to more effec-
tively model the 3D motion across different time in-
stances.

• We impose a cyclic flow consistency loss to train the
pair of motion fields.

• We show superior performance of our model when
compared to existing models on three popular dynamic
scene novel view synthesis datasets.

• Our method enables the visualization of scene flow be-
tween any pair of frames in the novel views.
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2. RELATED WORK

Dynamic radiance fields can be broadly classified into two
categories based on how the temporal modeling is handled. A
simple approach is to model the dynamic radiance field as a
6D function of position, time, and viewing direction [9]. K-
Planes [2] and HexPlane [3] extend TensoRF [10] to a 4D
model that maps the position and time to a latent feature,
which is then decoded by a tiny MLP. The lack of an explicit
motion model in these approaches makes it incompatible to
impose motion priors when learning with sparse input view-
points.

The second set of models employs a motion or deforma-
tion field that maps the 3D points from a given time instant
to a canonical space [1, 11, 12]. TiNeuVox [13] and SWAGS
[14] replace the scene representation MLP in D-NeRF [1]
with a low-rank tensor approximation, but use MLPs to model
the motion field. Recently, 3D Gaussian splatting models
have also been extended for dynamic scenes. CoGS [15],
4DGS [5], Ex4DGS [16] and STGS [6] model a canonical
space with 3D Gaussians. A deformation field is learned to
model the displacement of these Gaussians over time. While
CoGS uses MLPs to model the displacement, 4DGS uses
low-rank tensor approximations, and Ex4DGS and STGS use
polynomials.

Most existing methods require a dense set of input view-
points, and their performance drops sharply with sparse input
viewpoints. RF-DeRF [7] employs motion modeling using
factorized fields to explore the reliability of priors to con-
strain the models in case of sparse input views for dynamic
scenes. However, the motion modeling is unidirectional,
which causes poor learning of the canonical space. Further,
it is very difficult to visualize the learned flow in existing
models. We seek to address these challenges in our work.

3. METHOD

3.1. DeRF

We briefly review the deformable radiance field (DeRF)
model [7] here before discussing our contributions. DeRF
introduces motion modeling using factorized motion fields
that maps any 4D point (x, y, z, t) in a scene at time t to a
static canonical space. Further, the static canonical radiance
field is learned to obtain color and occupancy. The deforma-
tion or flow field is represented by six spatio-temporal planes:
{Sxy,Syz,Sxz,Sxt,Syt,Szt}, defined at varying resolutions
at multiple scales. These planes, combined with a small MLP,
compute the flow of a 4D point to the canonical space. The
Hadamard product of the features obtained from these multi-
resolution planes is fed to a tiny MLP to obtain the scene
flow. The static canonical radiance field is modeled by three
spatial planes.

Given multiview video sequences of length T frames, we

sample pixels randomly from these frames. Our objective is
to learn the pixel color in view v at time t using the super-
vision of ground truth color. To render a pixel, N points are
sampled along the ray that originates from the camera cen-
ter and passes through the pixel at depths {zi}Ni=1, producing
{pi}Ni=1. For every 3D point pi, we first obtain the corre-
sponding 3D point p′

i at canonical space by computing the
scene flow from time t to canonical space using forward flow
field Ff as

p′
i = Ff (pi, t) + pi. (1)

We then query the static radiance field Gs at p′
i to obtain the

volume density σi and a feature h′
i corresponding to pi as

σi,h
′
i = Gs (p

′
i) . (2)

A tiny MLP Ms maps h′
i, encoded viewing direction v

and encoded time t to the color ci of pi as

ci = Ms (h
′
i, γ (v) , γ (t)) , (3)

where γ denotes the encoding of the viewing direction and
the time. Note that Ms is time and view-dependent, capturing
time-varying color changes due to object motion. The color
c at a pixel is then obtained by volume rendering using ci
obtained from Ms as

c =

N∑
i=1

wici. (4)

We use the occupancy to obtain the weight contributing to
each point as

wi =
(
Πi−1

j=1 exp (−δjσj)
)
(1− exp (−δiσi)) . (5)

We refer to the photometric loss that measures the squared
error between the predicted color and the ground truth color
at a pixel as Lph. While the DeRF model introduces a motion
field, it is constrained using sparse and dense flow priors in
RF-DeRF [7]. We refer to the sparse and dense flow prior
losses introduced in RF-DeRF as Lsf and Ldf .

3.2. BF-DeRF

Our main contribution is the introduction of bi-directional
motion modeling of dynamic scenes through a backward flow
field in addition to the forward flow field. The backward flow
field is similar in architecture to the forward flow field and
consists of six spatio-temporal planes similar to DeRF. While
the forward flow field Ff predicts the flow of 3D points at
time t to the canonical space , the backward flow field Fb

maps canonical points to any desired time instance t′′. The bi-
directional flow of 3D points discourages many-to-one map-
ping of points in canonical space caused by the unidirectional
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Fig. 1. Model architecture: We model the 4D dynamic radiance field as a combination of bi-directional 4D scene flow fields
(Ff , Fb) and 3D static canonical radiance field Fs. Here, Ff maps any point (pi, t) to the canonical space. Fb maps canonical
points to any desired time t′′ allowing for scene flow visualization. Both scene flow fields have the same structure consisting
of six spatio-temporal planes and a small MLP M. Forward-backward flow fields enable the cyclic motion of 4D points. Static
canonical radiance field Fs models the color and occupancy of the canonical space.

scene flow of RF-DeRF. The backward flow field maps the
canonical points p′

i to points p′′
i at any time t′′. We obtain

the flow of 3D points {p′}Ni=1 from canonical space to time
t′′ using Fb as

p′′ = Fb (p
′, t′′) + p′. (6)

Employing bi-directional flow fields requires constraining
both the forward and backward flow fields (Ff ,Fb). Note
that the static radiance field Fs is also trained along with the
flow fields. To constrain the bi-directional fields, the canon-
ical point p′ is mapped to p′′ at time t′′ = t. We regularize
the backward flow field Fb by employing a cyclic flow con-
sistency loss Lcons defined as

Lcons =

N∑
i=0

wi ∥(pi − p′′
i )∥

2
, (7)

where wi are computed according to Eq. (5). Our cyclic flow
consistency loss Lcons ensures each canonical point to the ini-
tial 3D point. Note that we do not take the expected 3D point
loss instead, our loss encourages each point p′′ at time t′′ = t
to map again to the initial starting point pi at time t.

We train the two flow fields and the static field in our
model with Lph and Lcons and the flow losses. The overall
loss is given by

L = Lph + λsfLsf + λdfLdf + λconsLcons, (8)

where λsf, λdf and λcons are hyperparameters. Note that the
flow losses only constrain the forward field, while the cyclic

flow consistency loss constrains both the forward and back-
ward flow fields. Further, we do not employ stop-gradient on
either flow field in the consistency loss Lcons. Thus, we do not
treat either flow field as superior to another.

We note that the backward flow field is mainly used to
constrain the learning of the forward flow field. This prevents
the many-to-one mapping, leading to improved learning of the
motion field. Further, the backward field is not used during
the inference time. Once both the motion fields and the static
radiance field are learned during training, at inference time,
only the forward flow field and the static radiance field are
used to render a pixel from a given choice of view.

3.3. Visualizing Scene Flow

Visualizing object motion in existing volumetric dynamic
scene models [2, 3] is challenging because these methods
often lack explicit motion modeling. Thus, the motion of
objects over time is not readily available for visualization
in new perspectives. One of the benefits of our bidirectional
flow field model is that it allows us to visualize the 3D motion
learned across time and across cameras.

To visualize the motion of a pixel (x, y) at time t at
another time instance t′′, we use BF-DeRF in a two-step
mapping process as follows. First, the 3D points pi’s along
the ray corresponding to the pixel (x, y) are mapped into the
canonical space using the forward flow field Ff . From the
canonical space, the respective 3D points are subsequently
mapped to the desired time instance t′′ using backward flow
field Fb. This transformation yields the 3D points p′′’s
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Fig. 2. Flow Visualization : During the transition between
frames 75 to 125 and 125 to 230, the pixels on the spatula,
moving hand, and body accurately follow the motion. The
corresponding pixel locations are marked by colored circles.

at time t′′, which correspond to the original points pi’s in
canonical space. To obtain the final visualization, the points
p′′ are alpha-composited to determine the expected 3D point,
which is then projected onto the image plane. The resulting
projected point represents the pixel location corresponding
of (x, y, t) at time t′′. We show an example of such flow
visualization in Fig. 2.

4. EXPERIMENTS AND RESULTS

4.1. Datasets and Implementation Details

We evaluate our model on three popular multi-view dynamic
scene datasets, N3DV [17], InterDigital [18] and Nvidia [19]
with two and three input views. Similar to prior work [2, 7],
all the videos are spatially downsampled by factor of two.
The N3DV dataset contains 6 scenes with 17 to 21 multiview
cameras arranged in 2 rows with a spatial resolution of 1352×
1014. Each video sequence has 300 frames. The InterDigital
dataset contains multi-view videos from a 16 camera rig. We
select 5 scenes as suggested in [7] with a spatial resolution of
1024× 544 having 300 frames per video. The Nvidia dataset
contains a multi-view camera setup of 12 cameras. We choose
longer-duration videos which involve more than 90 frames.
The resolution of the videos is 960 × 540. All the datasets
have frame rate of 30fps. The test camera in all datasets is
selected as the center of the arranged cameras. For training,
we select cameras diagonally with respect to the test camera
and add nearby cameras as we increase training views.

We compare the performance of our model against RF-
DeRF [7], 4DGS [5] and STGS [6]. We use the official code
release of RF-DeRF and modify it to implement our model.
For the BF-DeRF model, we set λcons = 0.01. We evaluate
all the models using PSNR, SSIM and LPIPS.

4.2. Results

We show the quantitative performance of our model in Tab. 1
and Tab. 2, where our BF-DeRF model remains consistently
good across all datasets. On the other hand, dynamic 3D
Gaussian splatting methods, such as 4DGS [5] and STGS [6]
fail to generalize across datasets. We observe that 4DGS per-
forms much worse on the InterDigital dataset as the dataset

Fig. 3. Qualitative example on InterDigital dataset with 3
input views: We see that the details are clearly reconstructed
by BF-DeRF and better than the other models in all the three
highlighted regions.

Fig. 4. Qualitative example on Nvidia dataset with 2 views:
we observe that 4DGS renders a headless moving person
while STGS is suffers from loss of details and color distor-
tions. BF-DeRF does not suffer from any of these artifacts.

involves complex motion with objects entering and leaving
the scene. It is unable to learn such motions, whereas our
model performs best on this dataset. In the Nvidia dataset,
we observe that the BF-DeRF model is very close to the
4DGS model, and the STGS model falls significantly short.
The poor performance of STGS here could be due to a very
high dependency on hyperparameters. Further, our model
performs consistently well for both 2 and 3 input cases.

From Fig. 3 and Fig. 4, we observe that BF-DeRF bet-
ter reconstructs finer details throughout the frame as opposed
to just a few regions for 4DGS and STGS. 4DGS performs
much worse in moving regions where objects enter or leave
the scene or have complex motions. STGS performs better
than 4DGS in InterDigital due to the time-varying opacity and
color, but it fails drastically on the Nvdia dataset for the same
reason. In particular, having the ability to change the color
and opacity of the Gaussians over time increases the model
capacity, which leads to the model being sensitive to hyper-
parameters. In particular, we observe that STGS is highly
dependent on hyper-parameters, which lead to color degrada-
tions in the rendered frames as shown in Fig. 4.

Model (2-views) N3DV InterDigital Nvidia
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

4DGS 21.46 0.78 0.29 15.9 0.42 0.46 19.0 0.58 0.36
STGS 19.9 0.79 0.28 15.5 0.57 0.41 8.5 0.37 0.69

RF-DeRF 20.3 0.71 0.33 19.1 0.66 0.31 17.4 0.45 0.51
BF-DeRF 21.9 0.79 0.26 19.2 0.70 0.28 18.6 0.57 0.39

Table 1. Quantitative Results: we compare our mode on 3
datasets N3DV, InterDigital and Nvidia with 4DGS , STGS
and RF-DeRF methods we report PSNR, SSIM, and LPIPS
scores for the rendered images for 2 input training views.
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Model (3-views) N3DV InterDigital Nvidia
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

4DGS 26.5 0.90 0.17 19.57 0.60 0.36 20.0 0.66 0.33
STGS 24.4 0.86 0.2 21.3 0.82 0.20 15.8 0.60 0.42

RF-DeRF 26.1 0.90 0.16 22.8 0.80 0.21 19.2 0.60 0.42
BF-DeRF 27.0 0.92 0.12 23.1 0.83 0.19 19.6 0.65 0.36

Table 2. Quantitative Results: we compare our mode on 3
datasets N3DV, InterDigital and Nvidia with 4DGS , STGS
and RF-DeRF methods we report PSNR, SSIM, and LPIPS
scores for the rendered images for 3 input training views.

4.3. Need for Bidirectional Flow

From Fig. 5 and Fig. 6, we conclude that RF-DeRF struggles
to capture fine details, while BF-DeRF successfully recon-
structs both the structure and fine details of the scene. RF-
DeRF, with its uni-directional flow, results in visible object
distortions and loss of finer details. The incorporation of bi-
directional flow in motion modeling helps reduce object de-
formation and minimize discontinuities in objects. where the
3D scene points are uniquely mapped to the canonical space,
leading to more accurate and consistent reconstructions.

Fig. 5. Qualitative comparison between RF-DeRF and BF-
DeRF on InterDigital dataset: BF-DeRF performs better on
the person’s face, as shown in the top row. RF-DeRF struggles
to render the writing on the hanging balloon.

4.4. Poor initialization in dynamic Gaussian splatting

We study the impact of initialization on 4DGS to explore sce-
narios where our BF-DeRF model can perform better than
4DGS on the Nvidia dataset. We observe that for a small num-
ber of initialization points, BF-DeRF performs better than
4DGS, as shown in Fig. 8 for 3 views. The superior per-
formance of 4DGS on the Nvidia dataset may be attributed

Fig. 6. Qualitative comparison on N3DV between RF-
DeRF and BF-DeRF: BF-DeRF renders features such as the
cap, the person’s face, hands, the torch, and in the background
in the bottom-left region of the image with bottles and the
window better compared to RF-DeRF.

Fig. 7. Qualitative comparision of poor initialization in 4DGS
with BF-DeRF : Better reconstructed regions in BF-DeRF are
marked by the arrows in the scene.

Fig. 8. Effect of initialization on 4D Gaussian splatting:
For 3-views on the Nvidia dataset, overall 4DGS does slight
better than BF-DeRF. But as the number of initialization
points decreases, performance of 4DGS decreases, whereas
BF-DeRF performs better.

to the rich initialization from COLMAP while our BF-DeRF
model, which is volumetric, is not constrained by such limita-
tions. The problem of obtaining rich initializations becomes
even more important in the sparse set-up where there are very
few input views. We also show visual examples to elucidate
this observation. From Fig. 7, we observe that 4DGS strug-
gles to render the details in the object marked with arrows.
4DGS renders a smooth balloon, whereas our model is able
to reconstruct the finer details of the balloon. Please refer to
the project page to view the video comparisons.

5. CONCLUSION

Our introduction of bi-directional flow in motion modeling
reduces the ambiguities introduced by unidirectional motion
modeling and uniquely mapping every point in canonical
space. The forward-backward motion fields also help visual-
ize the 3D scene flow. While the backward flow field slightly
increases the train time when compared to RF-DeRF, there
are gains in rendering quality. Although 3D Gaussian splat-
ting methods may be superior occasionally, they suffer from
poor initialization in sparse input view cases. However, volu-
metric models can learn to populate occupancy around most
of the objects in the radiance field. Exploring a combined
approach of splatting and volumetric modeling of a scene
could be an interesting future direction.

1179

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on August 24,2025 at 02:01:59 UTC from IEEE Xplore.  Restrictions apply. 



6. REFERENCES

[1] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and
Francesc Moreno-Noguer, “D-NeRF: Neural radiance
fields for dynamic scenes,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2021.

[2] Sara Fridovich-Keil, Giacomo Meanti, Frederik Rah-
bæk Warburg, Benjamin Recht, and Angjoo Kanazawa,
“K-Planes: Explicit radiance fields in space, time, and
appearance,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR), 2023.

[3] Ang Cao and Justin Johnson, “HexPlane: A fast rep-
resentation for dynamic scenes,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2023.

[4] Bernhard Kerbl, Georgios Kopanas, Thomas
Leimkühler, and George Drettakis, “3d gaussian
splatting for real-time radiance field rendering,” ACM
Transactions on Graphics (TOG), vol. 42, no. 4, 2023.

[5] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xi-
aopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian, and Xing-
gang Wang, “4d gaussian splatting for real-time dy-
namic scene rendering,” 2024.

[6] Zhan Li, Zhang Chen, Zhong Li, and Yi Xu, “Spacetime
gaussian feature splatting for real-time dynamic view
synthesis,” 2024.

[7] Nagabhushan Somraj, Kapil Choudhary, Sai Harsha
Mupparaju, and Rajiv Soundararajan, “Factorized mo-
tion fields for fast sparse input dynamic view synthe-
sis,” in Special Interest Group on Computer Graphics
and Interactive Techniques Conference Conference Pa-
pers ’24. July 2024, SIGGRAPH ’24, p. 1–12, ACM.

[8] Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and
Deva Ramanan, “Dynamic 3d gaussians: Tracking by
persistent dynamic view synthesis,” in 2024 Interna-
tional Conference on 3D Vision (3DV). Mar. 2024, p.
800–809, IEEE.

[9] Chen Gao, Ayush Saraf, Johannes Kopf, and Jia-Bin
Huang, “Dynamic view synthesis from dynamic monoc-
ular video,” arXiv e-prints, p. arXiv:2105.06468, May
2021.

[10] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu,
and Hao Su, “TensoRF: Tensorial radiance fields,” in
Proceedings of the European Conference on Computer
Vision (ECCV), 2022.

[11] Chaoyang Wang, Lachlan Ewen MacDonald, László A.
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