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Abstract

Novel view synthesis refers to the problem of synthesizing novel viewpoints of a scene

given the images from a few viewpoints. This is a fundamental problem in computer

vision and graphics, and enables a vast variety of applications such as meta-verse, free-

view watching of events, video gaming, video stabilization and video compression. Recent

3D representations such as radiance fields and multi-plane images significantly improve

the quality of images rendered from novel viewpoints. However, these models require a

dense sampling of input views for high quality renders. Their performance goes down

significantly when only a few input views are available. In this thesis, we focus on the

sparse input novel view synthesis problem for both static and dynamic scenes.

In the first part of this work, we mainly focus on sparse input novel view synthesis

of static scenes using neural radiance fields (NeRF). We study the design of reliable and

dense priors to better regularize the NeRF in such situations. In particular, we propose

a prior on the visibility of the pixels in a pair of input views. We show that this visibility

prior, which is related to the relative depth of objects, is dense and more reliable than

existing priors on absolute depth. We compute the visibility prior using plane sweep

volumes without the need to train a neural network on large datasets. We evaluate our

approach on multiple datasets and show that our model outperforms existing approaches

for sparse input novel view synthesis.

In the second part, we aim to further improve the regularization by learning a scene-

specific prior that does not suffer from generalization issues. We achieve this by learning

the prior on the given scene alone without pre-training on large datasets. In particular,

we design augmented NeRFs to obtain better depth supervision in certain regions of the
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scene for the main NeRF. Further, we extend this framework to also apply to newer

and faster radiance field models such as TensoRF and ZipNeRF. Through extensive

experiments on multiple datasets, we show the superiority of our approach in sparse

input novel view synthesis.

The design of sparse input fast dynamic radiance fields is severely constrained by

the lack of suitable representations and reliable priors for motion. We address the first

challenge by designing an explicit motion model based on factorized volumes that is

compact and optimizes quickly. We also introduce reliable sparse flow priors to constrain

the motion field, since we find that the popularly employed dense optical flow priors are

unreliable. We show the benefits of our motion representation and reliable priors on

multiple datasets.

In the final part of this thesis, we study the application of view synthesis for frame

rate upsampling in video gaming. Specifically, we consider the problem of temporal

view synthesis, where the goal is to predict the future frames given the past frames

and the camera motion. The key challenge here is in predicting the future motion of

the objects by estimating their past motion and extrapolating it. We explore the use

of multi-plane image representations and scene depth to reliably estimate the object

motion, particularly in the occluded regions. We design a new database to effectively

evaluate our approach for temporal view synthesis of dynamic scenes and show that we

achieve state-of-the-art performance.
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Chapter 1

Introduction

The ability to synthesize novel views of a scene enables diverse applications such as 3D

TV, extended reality, video gaming, video compression and video stabilization. Novel

view synthesis has been a long-standing problem of interest in computer vision and graph-

ics. Image based Rendering (IBR) approaches synthesize the novel views by copying the

RGB color from the source views to the target pixel. The use of depth to determine

the source and target pixels can help improve the performance. However, IBR based

approaches struggle in handling specular objects, soft edges, and thin structures [134].

This motivated researchers to explore volumetric representations for novel view synthe-

sis. Such an approach is also known as inverse rendering, since it involves learning a 3D

representation of the scene from 2D images. Researchers explored multiple techniques

such as plane sweep volume based representations [52], multi-plane images [216] and

layered depth images [153], culminating in the neural radiance field (NeRF) representa-

tion [123]. NeRFs achieve remarkable performance in novel view synthesis by employing

a continuous depth representation using neural networks.

NeRFs require a dense sampling of the input views for photo-realistic rendering of

novel views. However, in multiple applications such as virtual or augmented reality,

telepresence, robotics, and autonomous driving, obtaining a dense set of views is expen-

sive, and only a few input images may be available for training [128]. In such settings

however, external sensors or a pre-calibrated fixed camera array may be employed to

1
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obtain accurate camera poses. Thus, there is a need to train NeRFs with few input

views referred to as the sparse input NeRF problem.

Popular approaches to train NeRF with sparse input views include conditioning the

NeRF on a latent scene representation [210] or regularizing with scene priors [46, 142].

However, the existing approaches [142, 210] suffer from issues related to the generaliza-

tion of the scene latent or learned depth priors. Other depth priors [46] are not dense

enough to sufficiently constrain the NeRF. This motivates the exploration of dense and

reliable priors to constrain the sparse input NeRF. Firstly, we attempt to obtain a reli-

able and dense prior in terms of visibility of pixels in a pair of input views. We estimate

this visibility prior without the need to train a neural network on large datasets. Al-

though this approach outperforms existing priors, we then explore if scene-specific priors

can be learned in-situ. Specifically, we design augmented models that provide better

depth supervision in certain regions of the scene. We outperform existing approaches

on multiple popular datasets used to evaluate sparse input NeRFs. We also extend

this framework to explicit radiance fields for fast optimization and rendering times. We

show that similar depth supervision can enable effective learning of sparse input explicit

radiance fields.

While our focus so far has been on the novel view synthesis of static scenes, there

exist several applications where the scene contains dynamic objects. It is of considerable

interest to synthesize novel views of such scenes, where the movement of the objects in the

scene adds an additional challenge. This motivates the study of motion priors for sparse

input dynamic view synthesis. Further, we wish to study this in the context of explicit

radiance fields for fast optimization and rendering. However, existing explicit dynamic

radiance fields [28, 53] employ 4D volumetric representations without a motion model.

Hence, they do not allow the motion implicitly learned by the model to be regularized

using motion priors. Thus, we design a dynamic radiance field with an explicit motion

field that lends itself to be constrained with motion supervision. Further, the motion

priors used in the literature such as dense optical flow maps [169] are unreliable, and

hence we design reliable motion priors for constraining the motion model.
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Novel view synthesis also finds applications in synthetically rendered videos such

as video games and graphical rendering of high resolution content on handheld mobile

devices. Specifically, novel view synthesis can be employed to improve the user experience

by upsampling the frame-rate of graphically rendered videos [7]. This is also known

as interleaved reprojection [4, 19, 20, 93], where the frames are rendered graphically

periodically, and the intermediate frames are predicted based on the past frames. The

prediction of these frames needs to adjust for the camera motion or change in view point

of the user as well as the movement of objects in the scene. This leads us to the problem

of temporal view synthesis of dynamic scenes (TVS-DS), where the goal is to generate

the future video frame given its camera pose. In such applications, the content creators

make the depth of the scene available, while the motion vectors for moving objects may

not typically be available. We leverage the Multiplane Image (MPI) 3D representation

for effective learning of the object motion for TVS-DS.

1.1 Contributions

The main contributions of this thesis are the design of reliable priors to better constrain

the learning process and the design of volumetric representations that are better suited

for sparse input view synthesis. In the following sections, we provide a brief overview of

the contributions of this thesis for various problems in novel view synthesis as discussed

above.

1.1.1 Visibility Prior for Sparse Input Neural Radiance Fields

Our goal is to design a dense and reliable prior for constraining the sparse input NeRF

for static scenes. In this context, we explore the use of regularization in terms of the

visibility of a pixel from a pair of viewpoints. Here, the visibility of a pixel refers to

whether the corresponding object is seen in both viewpoints. For example, foreground

objects are typically visible in multiple views whereas the background objects may be

partially occluded. The visibility of a pixel in different views relies more on the relative
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depth of the scene objects than the absolute depth. We hypothesize that, given sparse

input views, it may be easier to estimate the relative depth and visibility instead of the

absolute depth. Thus, the key idea is to regularize the NeRF with a dense visibility prior

estimated using the given sparse input views. This allows the NeRF to learn better scene

representation. We refer to our Visibility Prior regularized NeRF model as ViP-NeRF.

To obtain the visibility prior, we employ the plane sweep volumes (PSV) [42] that

have successfully been used in depth estimation [55, 65, 74, 206] and view synthesis

models [216]. We create the PSV by warping one of the images to the view of the other

at different depths (or planes) and compare them to obtain error maps. We determine

a binary visibility map for each pixel based on the corresponding errors in the PSV.

We regularize the NeRF training by using such a map as supervision for every pair of

input views. We use the visibility prior in conjunction with the depth prior from DS-

NeRF [46], where the former provides a dense prior on relative depth while the latter

provides a sparse prior on absolute depth. Note that the estimation of our visibility prior

does not require any pre-training on a large dataset.

Regularizing the NeRF with a dense visibility prior is computationally intensive and

can lead to impractical training times. We reformulate the NeRF to directly and ad-

ditionally output visibility to impose the regularization in a computationally efficient

manner. We conduct experiments on two popular datasets to demonstrate the efficacy

of the visibility prior for sparse input NeRF.

The main contributions of our work are as follows.

• We introduce visibility regularization to train the NeRF with sparse input views

and refer to our model as ViP-NeRF.

• We estimate the dense visibility prior reliably using plane sweep volumes.

• We reformulate the NeRF MLP to output visibility thereby significantly reducing

the training time.

• We outperform prior approaches on sparse input NeRFs on multiple datasets.
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1.1.2 Regularizing Sparse Input Radiance Fields with Simpler

Solutions

Although the visibility prior is dense and reliable, it is not as rich as a dense depth

prior. We aim to obtain dense depth priors that do not suffer from generalization issues

by learning the dense depth supervision in-situ without employing any pre-training.

Further, we desire to design a single framework of regularization that is applicable to

both implicit and explicit radiance fields. While there exists a plethora of implicit and

explicit radiance field models, we consider the NeRF as the representative model for

implicit radiance fields and consider two explicit radiance fields, namely, TensoRF [33]

and ZipNeRF [18].

We first observe that the radiance field models often exploit their high capability

to learn unnecessary complex solutions when training with sparse input views. While

these solutions perfectly explain the observed images, they can cause severe distortions

in novel views. For example, some of the key components of the radiance fields, such as

positional encoding in the NeRF or vector-matrix decomposition employed in TensoRF,

provide powerful capabilities to the radiance field and are designed for training the

model with dense input views. Existing implementations of these components may be

sub-optimal with fewer input views due to the highly under-constrained system, causing

several distortions. We follow the popular Occam’s razor principle and regularize the

radiance fields to choose simpler solutions over complex ones, wherever possible. In

particular, we design augmented models by reducing the capabilities of the radiance

fields and use the depth estimated by these models to supervise the main radiance field.

We design different augmentations for NeRF, TensoRF and ZipNeRF based on dif-

ferent shortcomings and architectures of these models. The high positional encoding

degree used in the NeRF leads to undesired depth discontinuities, creating floaters. Fur-

ther, the view-dependent radiance feature leads to shape-radiance ambiguity, creating

duplication artifacts. We design augmentations for the NeRF by reducing the positional

encoding degree and disabling the view-dependent radiance feature. On the other hand,
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the large number of high-resolution factorized components in TensoRF and the large

hash table in ZipNeRF cause floaters in these models in the few-shot setting. Thus, we

design augmentations to constrain the model with respect to such components to learn

simpler solutions.

We use the simplified models as augmentations for depth supervision and not as the

main NeRF model since naïvely reducing the capacity of the radiance fields may lead

to sub-optimal solutions in certain regions [75]. For example, the model that can learn

only smooth depth transitions may fail to learn sharp depth discontinuities at object

boundaries. Further, the augmented models need to be used for supervision only if

they explain the observed images accurately. We gauge the reliability of the depths by

reprojecting pixels using the estimated depths onto a different nearest train view and

comparing them with the corresponding images.

We refer to our family of regularized models as Simple Radiance Fields (Simple-RF)

since we regularize the models to choose simple solutions over complex ones, wherever

feasible. We refer to the individual models as Simple-NeRF, Simple-TensoRF and Simple-

ZipNeRF respectively. We evaluate our models on four popular datasets that include

forward-facing scenes (NeRF-LLFF), unbounded forward-facing scenes (RealEstate-10K),

unbounded 360◦ scenes (MipNeRF360) and bounded 360◦ scenes (NeRF-Synthetic) and

show that our models achieve significant improvement in performance on all the datasets.

Further, we show that our model learns geometry significantly better than prior art. We

will release the source code for all our models.

We list the main contributions of our work in the following.

• We find that the high positional encoding degree and view-dependent radiance of

the NeRF cause floater and duplication artifacts when training with sparse inputs.

We design augmented models on both these fronts to supervise the main NeRF

and mitigate both artifacts.

• We observe that the large number of high-resolution decomposed components in

TensoRF leads to floater artifacts with sparse inputs. Thus, the augmented model
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is obtained by reducing the number and resolutions of the decomposed components.

• We find that the large hash table in ZipNeRF causes floaters when training with

sparse inputs. The augmented model is designed by reducing the size of the hash

table.

• We design a mechanism to determine whether the depths estimated by the aug-

mented models are accurate and utilize only the accurate estimates to supervise

the main radiance field.

• We show that our regularization achieves substantial improvements on different

radiance fields and on four different datasets.

1.1.3 Factorized Motion Fields for Fast Sparse Input Dynamic

View Synthesis

To achieve novel view synthesis of sparse input dynamic scenes, we seek to design a fast

and compact dynamic radiance field model that is amenable to supervision with motion

priors. We design a dynamic radiance field consisting of two models, a 5D radiance field

that learns the 3D scene at a canonical time instant and a 4D motion or deformation

field that learns the motion from any time instant t to the canonical time instant t′.

Since the motion model is a one-directional mapping from t to t′, it is not obvious how

to impose flow priors across two arbitrary time instants. We achieve this by constraining

our motion model to map a pair of matched points, obtained using the motion prior,

to the same 3D point in the canonical volume. This allows us to impose motion priors

across any two time instants and across any cameras.

Prior and concurrent works [49, 150] employ deep neural networks (DNN) to learn

the motion field. However, the use of the DNN to learn the motion makes the model

computationally expensive. The challenge here is to design a motion model that can

learn the motion efficiently while yielding fast training and rendering. While explicit

models such as voxel grids [54, 165], hash-grids [125] and 3D Gaussians (3DGS) [81]
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are shown to be effective in learning static scenes, naively extending these techniques to

model 4D motion may not be efficient. For example, extending 3D voxel grids to 4D

scales the memory requirement to the fourth power of grid resolution. Further, for a

given object, since the motion exists at every time instant, models that exploit scene

sparsity to reduce the memory requirement may not extend effectively to 4D. Since

the motion is dense and has a high spatio-temporal correlation, we employ factorized

volumes to exploit the correlation. Specifically, we employ a 4D factorized volume to

learn the scene flow from any time t to the canonical time t′.

We find that dense optical flow priors obtained using deep flow estimation networks

suffer from generalization issues. Regularizing the motion model with such noisy flow

priors may lead to sub-optimal performance. We address this challenge by employing a

reliable sparse flow prior obtaining by matching SIFT keypoints.

We evaluate our model on two popular multi-view dynamic scene datasets and find

that our model outperforms the state-of-the-art dynamic view synthesis models with

fewer input viewpoints. We refer to our model as SF-DeRF, since we employ Sparse

Flow priors for Deformable Radiance Fields. We summarize the main contributions of

our work in the following:

• We design a fast and compact dynamic radiance field for sparse input dynamic view

synthesis by employing an explicit motion model that can be easily regularized

using motion priors. We employ a 4D factorized volume to exploit the spatio-

temporal correlation of the motion field.

• We propose reliable flow priors based on matching sparse SIFT keypoints across

cameras and time instants.

• We achieve very good dynamic view synthesis performance on two popular multi-

view datasets with very few views.
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1.1.4 Temporal View Synthesis of Dynamic Scenes through 3D

Object Motion Estimation with Multi-Plane Images

The key challenges in TVS-DS involve leveraging the user or camera motion to extrapo-

late the past motion of moving objects, combining these to predict the next frame, and

infilling any disocclusions arising out of the combined motion. We design a framework

to decouple camera and object motion, which allows us to effectively use the available

camera motion and only predict the object motion. To predict future object motion, we

estimate the object motion in the past frames and then extrapolate it. However both

the camera motion and object motion are intertwined in the past frames. To estimate

the object motion alone, we first nullify the camera motion between the past frames by

warping them to the same view using projective geometry. Decoupling camera and ob-

ject motion makes the predicted object motion independent of the past or future camera

motion, and thus we can synthesize future frames even when there is a change in the

camera trajectory.

The depth of moving objects in a scene is usually different from that of their neigh-

boring pixels. This difference can be exploited to better estimate the object motion

by matching the points in 3D instead of 2D. Driven by this observation, we propose a

method to estimate object motion in 3D, which we show to be more accurate than 2D mo-

tion estimation. It is also beneficial to use 3D motion estimation in occluded/disoccluded

regions since such regions do not have matching points, and the motion estimation is

guided by the neighborhood motion only. Occluded regions typically belong to the rela-

tive background, and hence motion in such regions is similar to that of the neighborhood

background. Estimating motion in 3D can utilize this correlation to estimate better

object motion.

We employ multi-plane images (MPI) as a 3D representation of the scenes, which

represents the objects in the scene using multiple images placed at different depths. We

choose the MPI representation since it can be directly processed by convolutional neu-

ral networks (CNN) and the frames can be reconstructed from MPI via differentiable
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alpha-compositing [161]. We estimate 3D motion as displacement vectors between the

corresponding points on the MPIs by training a CNN in an unsupervised fashion. Since

MPI representations are inherently sparse, we process the MPIs using partial convolu-

tion layers and employ masked correlations to compute the 3D cost volumes. We feed

the 3D cost volumes to the subsequent partial convolution layers, which estimate the

displacement or flow vectors. Since the depth dimension in MPIs is discrete, we predict

the motion in the depth dimension as a probability distribution over the depth planes.

The expected value of this predicted distribution gives the displacement in the depth

dimension.

We then incorporate the available camera motion to determine all locations in the

predicted frame that can be reconstructed from the past frame. Employing a 3D infilling

network similar to that of Srinivasan et al. [161], we synthesize the regions which are

newly uncovered in the predicted frames. We dub our model as DeCOMPnet since we

explicitly decompose the motion into camera and object motion for predicting the next

frame.

Since most view synthesis and video prediction datasets do not satisfy the prob-

lem assumptions for TVS-DS, we develop a new challenging dataset named the Indian

Institute of Science Virtual Environment Exploration Dataset - Dynamic Scenes (IISc

VEED-Dynamic). Our dataset contains 800 videos with 12 frames per video with a wide

variety of camera and object motion. We render the videos using Blender at full HD

resolution and a frame rate of 30fps. We evaluate our model and benchmark other video

prediction and view synthesis models on our dataset and the MPI-Sintel [26] dataset for

frame-rate upsampling. We show that our model achieves state-of-the-art performance

in terms of the quality of the predicted frames. We further upper bound the performance

of our model components using an oracle that has knowledge of the future frames.

We summarize our main contributions as follows:

• We formulate a framework for temporal view synthesis of dynamic scenes that uses

the available user or camera motion and only predicts the object motion.
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• We design a 3D motion estimation model using an MPI representation of past

frames after nullifying the camera motion between them. We introduce masked

correlation and partial convolution layers to handle sparsity in the MPI represen-

tation.

• We develop a challenging dataset, IISc VEED-Dynamic, consisting of 800 videos at

full HD resolution to evaluate our algorithm. We show that our model outperforms

other competing models on both MPI-Sintel and our datasets.

1.2 Organization

The rest of this thesis is organized as follows. In Chapter 2, we provide a discussion

of the related work in the areas of novel view synthesis, dynamic view synthesis and

motion estimation. Chapter 3 and Chapter 4 describe our approach to regularizing

sparse input NeRFs with visibility priors and simpler solutions respectively. We study the

design of fast and compact motion field and reliable motion priors for dynamic radiance

fields in Chapter 5. We present our approach to temporal view synthesis of dynamic

scenes in Chapter 6. Finally, we discuss future directions and conclude the thesis in

Chapter 7. The codes for all our models and the databases we developed are available

in the respective project pages that can be accessed from https://nagabhushansn95.

github.io/publications.html.

https://nagabhushansn95.github.io/publications.html
https://nagabhushansn95.github.io/publications.html


Chapter 2

Related Work

The prior work related to this thesis can be broadly classified into three parts. In the

first part, we review the prior work on novel view synthesis of static scenes, followed

up by dynamic scenes in the second part. Finally, we review the techniques related to

temporal view synthesis in the third part.

2.1 Novel View Synthesis of Static Scenes

Chen and Williams [36] introduce the problem of novel view synthesis and propose

an image-based rendering (IBR) approach to synthesize novel views. The follow-up

approaches introduce the geometry of the scene for synthesizing novel views through

approximate representations such as light fields [94], lumigraphs [60], plenoptic func-

tions [118] and layered depth images [149]. Chai et al. [30] study the minimum sampling

needed for light field rendering and also show that depth information enables better

view synthesis with sparse viewpoints. McMillan Jr [119] and Mark [115] introduce

depth image based rendering (DIBR) to synthesize new views. Multiple variants of

DIBR [32, 79, 167, 193] find use in various applications such as 3D-TV [50] and free-

viewpoint video [29, 41, 154]. Ramamoorthi [139] conducts a detailed survey on classical

work for novel view synthesis.

With the advent of deep learning, volumetric models utilize the power of learning by

12
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training the model on a large dataset of multi-view images. While the early approaches

predict volumetric representations in each of the target views [52, 78], latter approaches

predict a single volumetric representation and warp the representation to the target

view while rendering [122, 134, 153, 161, 216]. Prominent among these approaches is

the Multiplane Images (MPI) representation that represents the scene as a set of planar

images at different depths [67, 122, 161, 172, 216]. However, these approaches employ

discrete depth planes and hence suffer from discretization artifacts. The seminal work by

Mildenhall et al. [123] employ a continuous representation using multi-layer perceptrons

(MLP). This started a new pathway in neural view synthesis. However, these models

suffer from two major limitations, namely, the need for the dense sampling of input views

and the large time required to render novel views from the given input views. The prior

work that address these limitations can be broadly classified into three categories. In

Sec. 2.1.1, we review various approaches in the literature to regularize the NeRF when

training with sparse input views. We review the explicit radiance fields that aim at fast

optimization and rendering in Sec. 2.1.2, and also review the recent work on regularizing

explicit models for the few-shot setting. Finally, in Sec. 2.1.3, we review the generalized

NeRFs that address both issues jointly.

2.1.1 Implicit Radiance Fields

There exists extensive literature on regularizing scene-specific NeRFs when training with

sparse inputs. Hence, we further group these models based on their approaches.

2.1.1.1 Hand-Crafted Depth Priors:

The prior work on sparse input NeRFs explore a plethora of hand-crafted priors on the

NeRF rendered depth. RegNeRF [128] imposes a smoothness constraint on the rendered

depth maps. DS-NeRF [46] uses sparse depth provided by a Structure from Motion (SfM)

module to supervise the NeRF estimated depth at sparse keypoints. HG3-NeRF [59] uses

sparse depth given by colmap to guide the sampling 3D points instead of supervising the
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NeRF rendered depth. While these priors are more robust across different scenes, they

do not exploit the power of learning.

2.1.1.2 Deep Learning Based Depth Priors:

There exist multiple models that utilize the advances in dense depth estimation using

deep neural networks. DDP-NeRF [142] extends DS-NeRF by employing a CNN to

complete the sparse depth into dense depth for more supervision. SCADE [176] and

SparseNeRF [185] use the depth map output by single image depth models to constrain

the absolute and the relative order of pixel depths, respectively. DiffusioNeRF [198]

learns the joint distribution of RGBD patches using denoising diffusion models (DDM)

and utilizes the gradient of the distribution provided by the DDM to regularize NeRF

rendered RGBD patches. However, the deep-learning based priors require pre-training

on a large dataset and may suffer from generalization issues when obtaining the prior on

unseen test scenes.

2.1.1.3 View Hallucination based Methods:

Another line of regularization based approaches simulate dense sampling by hallucinat-

ing new viewpoints and regularizing the NeRF on different aspects such as semantic

consistency [75], depth smoothness [128], sparsity of mass [83] and depth based reprojec-

tion consistency [22, 35, 87, 201]. Instead of sampling new viewpoints randomly, Flip-

NeRF [147] utilizes ray reflections to determine new viewpoints. Deceptive-NeRF [107]

and ReconFusion [196] employ a diffusion model to generate images in hallucinated views

and use the generated views in addition to the input views to train the NeRF. However,

supervision with generative models could lead to content hallucinations, leading to poor

fidelity [90].

2.1.1.4 Other regularizations:

A few models also explore regularizations other than depth supervision and view hallu-

cinations. FreeNeRF [205] and MI-MLP-NeRF [220] regularize the NeRF by modifying
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the inputs. Specifically, FreeNeRF anneals the frequency range of positional encoded

NeRF inputs as the training progresses, and MI-MLP-NeRF adds the 5D inputs to ev-

ery layer of the NeRF MLP. MixNeRF [148] models the volume density along a ray as

a mixture of Laplacian distributions. Philip and Deschaintre [135] scale the gradients

corresponding to 3D points close to the camera when sampling the 3D points in inverse

depth to reduce floaters close to the camera. VDN-NeRF [219] on the other hand, aims

to resolve shape-radiance ambiguity in the case of dense input views. However, these

approaches are designed for specific cases and are either sub-optimal or do not extend

to more recent radiance field models.

2.1.2 Explicit Radiance Fields

The NeRF takes a long time to optimize and render novel views due to the need to

query the NeRF MLP hundreds of times to render a single pixel. Hence, a common

approach to fast optimization and rendering is to reduce the time taken per query.

Early works such as PlenOctress [209] and KiloNeRF [140] focus on improving only the

rendering time by baking the trained NeRF into an explicit structure such as Octrees or

thousands of tiny MLPs. PlenOxels [54] and DVGO [165] reduce the optimization time

by directly optimizing voxel grids, but at the cost of large memory requirements to store

the voxel grids. TensoRF [33] and K-Planes [53] reduce the memory consumption using

factorized tensors that exploit the spatial correlation of the radiance field. Alternately,

iNGP [125] and ZipNeRF [18] employ multi-resolution hash-grids to reduce the memory

consumption. Recently, 3DGS [81] propose an alternative volumetric model for real-

time rendering of novel views. Specifically, 3DGS employs 3D Gaussians to represent the

scene and renders a view by splatting the Gaussians onto the corresponding image plane.

While the above methods enable fast optimization and rendering, their performance still

reduces significantly with fewer input views.
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2.1.2.1 Sparse Input Explicit Radiance Fields:

Recently, there is increasing interest in regularizing explicit models to learn with sparse

inputs [97, 203]. However, the regularizations designed in these models are limited to a

specific explicit radiance field and do not generalize to other explicit models. For example,

ZeroRF [151] imposes a deep image prior [175] on the components of the TensoRF [33]

model. FSGS [221] and SparseGS [200] improve the performance of 3DGS [81] in the

sparse input case by improving the initialization of the 3D Gaussian point cloud and

pruning Gaussians responsible for floaters respectively.

2.1.3 Generalized Sparse Input NeRF

Obtaining a volumetric model of a scene by optimizing the NeRF is a time-consuming

process. In order to reduce the time required to obtain a volumetric model of a scene

and learn with fewer input views, generalized NeRF models train a neural network on a

large dataset of multi-view scenes that can be directly applied to a test scene without

any optimization [34, 89, 168]. Early pieces of work such as PixelNeRF [210], GRF [171],

and IBRNet [189] obtain convolutional features of the input images and additionally

condition the NeRF by projecting the 3D points onto the feature grids. MVSNeRF [34]

incorporates cross-view knowledge into the features by constructing a 3D cost volume.

However, the resolution of the 3D cost volume is limited by the available memory size,

which limits the performance of MVS-NeRF [100]. On the other hand, SRF [39] processes

individual frame features in a pair-wise manner, and GNT [187] employs a transformer

to efficiently incorporate cross-view knowledge.

NeuRay [108] and GeoNeRF [76] further improve the performance by employing

visibility priors and a transformer respectively to effectively reason about the occlusions

in the scene. More recent work such as GARF [152], DINER [137] and MatchNeRF [37]

try to provide explicit knowledge about the scene geometry through depth maps and

similarity of the projected features. Different from the above, MetaNeRF [168] learns

the latent information as initial weights of the NeRF MLPs by employing meta-learning.
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However, the need for pre-training on a large dataset of scenes with multi-view images

and generalization issues due to domain shift have motivated researchers to continue to

be interested in regularizing scene-specific radiance fields.

2.1.3.1 Single Image NeRF

This approach of conditioning the NeRF on learned features is also popular among

single image NeRF models [100, 201], which can be considered as an extreme case of

the sparse input NeRF. A common thread in single image NeRF models is to use an

encoder to obtain a latent representation of the input image. A NeRF based decoder

conditioned on the representation, outputs volume density and color at given 3D points.

For example, pix2NeRF [27] combines π-GAN [31] with NeRF to render photo-realistic

images of objects or human faces. Gao et al. [57] focus on human faces alone and use

a more structured approach by exploiting facial geometry. MINE [96] combines NeRF

with MPI by replacing the MLP based implicit representation with an MPI based explicit

representation in the decoder. Lin et al. [100] obtain a richer latent representation by

fusing global and local features obtained using a vision transformer and CNN respectively.

Different from the above models, Wimbauer et al. [194] use the MLP decoder to predict

volume density alone and obtain the color by directly sampling from the given images.

However, a common drawback of these models is the need for pre-training. Thus, the

performance may be inferior when testing on a generic scene.

2.2 Novel View Synthesis of Dynamic Scenes

2.2.1 Classical Work on Deformation Models

The modeling of dynamic radiance fields through a static radiance field and a motion

field is similar to the use of a deformation model that deforms a canonical representa-

tion of an entity. This is a popular approach to model deformable solids [146], human

motion [109], facial expressions [23], deformable garments [121, 136], fluids [3, 61, 69],
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gases [8], smoke [69], flames [72] as well as CT (Computed Tomography) and MRI

(Magnetic Resonance Imaging) scans in the medical field [129]. Learning the motion

or deformation field is also found to improve the reconstruction of 3D scenes [178] and

free-viewpoint rendering of dynamic scenes [29].

The canonical space in such deformable models is popularly represented as triangular

meshes estimated through a multi-view stereo algorithm [5, 23, 24, 85], or specialized

parametric meshes for humans and faces [6, 109, 181], or sums of Gaussians [163]. In con-

trast, we employ a radiance field to learn the canonical space owing to its advantages over

meshes [123]. Different deformation models include free-form deformation (FFD) fields

or optical flows [48, 186], bijective mappings [84], morphable models [21], splines [182],

volumetric Laplacian deformations [45] and linear systems with basis functions [72]. Our

motion field is closer to the free-form deformation among the above deformation ap-

proaches, but differs in the representation used for the motion field. Finally, the sparse

flow priors we employ can be thought of as similar to tracking the markers [64, 68] or

keypoints [24, 77] while estimating the classical deformation models.

2.2.2 Dynamic View Synthesis

Different from the use of deformable models, Zitnick et al. [222] learn the 3D scene

dynamics using a layered depth representation with motion compensation. More recent

volumetric representations such as Multiplane Images (MPI) [216] are extended to handle

dynamic scenes by employing an MPI per frame [101] or temporal basis functions [199].

To handle 360◦ scenes, Broxton et al. [25] replace MPI with multi-sphere images (MSI).

However, such approaches suffer from depth discretization artifacts [123]. Instead of

volumetric models, Yoon et al. [208] employ depth image based warping, where the depth

is obtained by combining monodepth with multi-view depth. Recent work on dynamic

view synthesis with sparse input viewpoints require depth information obtained through

the use of RGB-D cameras [95] or multi-view stereo [11]. Further, such approaches

struggle to handle soft edges and translucent objects [134].
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2.2.3 Dynamic Radiance Fields

In contrast to the classical approaches, dynamic view synthesis can be solved by learning

a 6D radiance field that maps the position, time and viewing direction to the radiance.

However, the performance of such approaches degrades when the input viewpoints are

sparse. We provide a quick overview of prior work that share a few attributes of our

model in Tab. 5.1. To the best of our knowledge, ours is the first work to address dynamic

radiance fields with few input viewpoints while achieving fast training and rendering.

Dynamic radiance fields can be broadly classified into two categories based on how

the temporal modeling is handled, which is crucial in the sparse input setting. A simple

approach is to model the dynamic radiance field as a 6D function of position, time, and

viewing direction [56]. To utilize flow priors, NSFF [99] predicts flow as an auxiliary

task and constrains the volume density of the mapped 3D points provided by the flow.

K-Planes [53] and HexPlane [28] extend TensoRF [33] to a 4D model that maps the

position and time to a latent feature, which is then decoded by a tiny multi-layer per-

ceptron (MLP). Instead of conditioning the radiance field directly on time, DyNeRF [98]

conditions the radiance field on a per-time-instant feature vector which is jointly opti-

mized with the radiance field. The lack of a motion model in these approaches makes it

incompatible to impose motion priors when learning with sparse input viewpoints.

The second set of models employs a motion or deformation field that maps the 3D

points from a given time instant to a canonical time instant [138, 184, 188]. TiNeu-

Vox [49], SWAGS [150] and CoGS [211] replace the scene representation MLP in D-

NeRF [138] with a TensoRF or 3DGS model, but use MLPs to model the motion field,

leading to expensive training and rendering time. To achieve fast optimization and ren-

dering, DeVRF [104] employs a 4D voxel grid to learn the deformation field, but its

memory requirements scale with the fourth power of the grid resolution. Instead of

employing a free-form deformation model, Wang et al. [183] models the motion using

discrete cosine transform (DCT) basis functions. Different from the above, prior [63]

and concurrent work [195] employ a motion model that maps the 3D points from the
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canonical time instant to a given time instant. However, the forward warping of points

can lead to holes in novel views, which may need to be infilled using a separate inpainting

network [63, 124, 158].

2.3 Temporal View Synthesis

Recall that in TVS-DS, we aim to predict the future frames given the past frames and

the camera poses of the past and future frames. We now review the prior work on

techniques required to solve the temporal view synthesis of dynamic scenes. Specifically,

we review the prior art on Video Prediction and motion estimation. Further, TVS-DS

also involves infilling disocclusions in the scene caused by the motion of the camera and

objects. Thus, we also review existing inpainting techniques.

Video Prediction: Deep video prediction was initially proposed as a self-supervised

approach for representation learning of videos [162]. Video prediction has also found

diverse applications such as robotic path planning [51], anomaly detection [106], video

compression [102] and autonomous driving [110]. Various video prediction approaches in-

clude multiscale prediction [117], predictive coding [110], decomposing video into motion

and content [174, 180], decoupling motion of background and foreground objects [197],

decomposing motion into velocity and acceleration maps [144], action conditioned pre-

diction [88] and so on. DPG [58], which disentangles motion propagation and content

generation, is closely related to our work. However, our approach differs in decomposing

the motion into camera motion and object motion and estimating object motion in 3D

using MPIs.

To account for the uncertainty of the future in long term prediction, stochastic video

prediction models [9, 47, 179] aim to predict multiple future motion-trajectories for a

given past. A detailed review of video prediction models can be found in [130]. However,

video prediction models, in general, do not use camera motion and depth available in

temporal view synthesis. In contrast, temporal view synthesis deals with the question of

how to use camera motion and only predict the local motion of objects.
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Motion Estimation: One of the most popular techniques for motion estimation

is optical flow. Optical flow estimation is a classical problem [70, 112] which has found

renewed interest due to the success of deep neural networks [105, 166]. In contrast to

2D based optical flow, scene flow estimates the motion in 3D. Recently, Yang et al. [204]

estimate scene flow by expanding 2D optical flow to 3D using camera geometry. Our 3D

motion estimation differs from the above through the use of the 3D MPI representation.

Inpainting: Depth image based rendering (DIBR) models employ the popular warp-

and-infill approach and focus on infilling the disocclusions [40, 114]. Luo et al.[113] detect

and remove foreground objects, reconstruct the background to infill the disocclusions and

then apply motion compensation. Srinivasan et al. [161] propose to infill in the 3D MPI

representation by copying the radiance from the background planes. Several image and

video inpainting algorithms exist in the literature including classical [14, 44, 192] and

deep learning [73, 82, 91, 126, 133, 202, 212] based models. Recently, Kanchana et

al. [79] consider the problem of temporal view synthesis for static scenes. Specifically,

they follow the DIBR approach to synthesize the next frame and predict infilling vectors

using a deep neural network to infill the discussions in 2D. In dynamic scenes, both the

camera and object motion can create disocclusions in the next frame, which need to be

infilled.
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ViP-NeRF: Visibility Prior for

Sparse Input Neural Radiance Fields

3.1 Introduction

The key challenge with sparse input NeRF for static scenes is that the volume rendering

equations in NeRF are under-constrained, leading to solutions that overfit the input

views. This results in uncertain and inaccurate depth in the learned representation.

Synthesized novel views in such cases contain extreme distortions such as blur, ghosting,

and floater artifacts [128, 142]. Recent works have proposed different approaches to

constrain the training of NeRF to output visually pleasing novel views. While a few

recent works [207, 213, 218] focus on training NeRF models on a specific category of

objects such as chairs or airplanes, we focus on training category agnostic sparse input

NeRF models [128]. Such prior work can be broadly classified into generalized NeRF

models and other regularization approaches.

In generalized NeRFs, the NeRF is additionally conditioned on a latent scene repre-

sentation obtained using a convolutional neural network [34, 66, 76, 108, 137, 187, 189,

210]. The latent prior helps overcome the limitation on the number of views by enabling

This chapter is based on the work published at SIGGRAPH 2023 [159].
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the NeRF model to effectively understand the scene. Such an approach is popular even

when only a single image of the scene is available as input to the NeRF [27, 100, 201].

However, these models require a large multi-view dataset for pre-training and may suffer

from generalization issues when used to render a novel scene [128]. Thus, we believe that

there is a need to study the sparse-input NeRF without conditioning the NeRF on latent

representations.

The other thread of work on sparse input NeRFs follows the original NeRF paradigm

of training scene-specific NeRFs, and designs novel regularizations to assist NeRFs in

converging to a better scene geometry [62, 127, 213]. One popular approach among

such models is to supervise the depth estimated by the NeRF. RegNeRF [128] uses a

depth smoothness prior to supervise the depth estimated by the NeRF. DS-NeRF [46]

uses a sparse depth prior obtained from a Structure from Motion (SfM) model such as

Colmap [145]. However, this prior is available at sparse keypoints only and hence does not

sufficiently constrain the NeRF. On the other hand, DDP-NeRF [142] and SCADE [176]

pre-train convolutional neural networks (CNN) on a large dataset of scenes to learn a

dense depth prior. These approaches may also suffer from issues similar to those of

the generalized models. This motivates the exploration of other reliable features for

dense supervision to constrain the NeRF in addition to sparse depth supervision. In this

chapter, we present our approach of regularizing the NeRF using a dense prior on the

visibility of pixels in a pair of views.

3.2 NeRF Preliminaries

We first provide a brief introduction to NeRF and define the notations for subsequent

use. A neural radiance field is an implicit representation of a scene using two multi-layer

perceptrons (MLP). Given a set of images of a scene with corresponding camera poses,

a pixel q is selected at random, and a ray r is passed from the camera center o through

q. Let p1, p2, . . . , pN be N randomly sampled 3D points along r. If d is the direction

vector of r and zi is the depth of a 3D point pi, i ∈ {1, 2, . . . , N}, then pi = o + zid. An
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MLP F1 is trained to predict the volume density σi at pi as

σi, hi = F1(pi), (3.1)

where hi is a latent representation. A second MLP F2 then predicts the color using hi

and the viewing direction v = d/∥d∥ as

ci = F2(hi, v). (3.2)

Let the distance between two consecutive samples pi and pi+1 be δi = zi+1 − zi. The

visibility or transmittance of pi is then given by

Ti = exp
(
−

i−1∑
j=1

δjσj

)
. (3.3)

The weight or contribution of pi in rendering the color ĉ of pixel q is computed as

wi = Ti (1− exp(−δiσi)) (3.4)

to obtain

ĉ =
N∑
i=1

wici. (3.5)

The MLPs are trained using mean squared error loss with the true color c of q as

Lmse = ∥c − ĉ∥2. (3.6)

3.3 Method

We illustrate the outline of our model in Fig. 3.1. The core idea of our work is that when

only a few multiview images are available for NeRF training, the visibility of a pixel in
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Figure 3.1: Overview of ViP-NeRF architecture. Given the images from primary and

secondary views, we estimate a visibility prior map in the primary view and use it to

supervise the visibility of pixels as predicted by the NeRF. Specifically, we cast a ray

through a randomly selected pixel in the primary view and sample 3D points along the

ray. For every point pi, we use the NeRF MLPs to obtain its visibility in primary and

secondary views, along with volume density σi and color ci. Volume rendering outputs

visibility t′ of the chosen pixel in the secondary view which is supervised by the visibility

prior. Lv constrains the visibilities T̂i output by network and Ti computed using volume

rendering to be consistent with each other.



26 Chapter 3. ViP-NeRF

different views can be more reliably densely estimated as compared to its absolute depth.

In this regard, we introduce visibility regularization to train the NeRF with sparse input

views in Sec. 3.3.1. To impose the visibility regularization, we obtain a binary visibility

prior map for every pair of input training images, which we explain in Sec. 3.3.2. Finally,

to reduce the training time, we design a method to efficiently predict the visibility of

a given pixel in different views in Sec. 3.3.3. Sec. 3.3.4 summarizes the various loss

functions used in training our model.

3.3.1 Visibility Regularization

Recall from Sec. 3.2 that NeRF trains MLPs by picking a random pixel q and predicting

the color of q using the MLPs and volume rendering. Without loss of generality, we

refer to the view corresponding to the ray r passing through q as the primary view and

choose any other view as a secondary view. NeRF then samples N candidate 3D points,

p1, p2, . . . , pN , along r. Let T ′
i be the visibility of pi from the secondary view, computed

similar to Eq. (3.3). We define the visibility of pixel q in the secondary view, t′(q), as

the weighted visibilities of all the candidate 3D points pi analogous to Eq. (3.5) as

t′(q) =
N∑
i=1

wiT
′
i ∈ [0, 1], (3.7)

where wi are obtained through Eq. (3.4). We omit the dependence of wi and T ′
i on q in

the above equation for ease of reading. We obtain a prior τ ′(q) ∈ {0, 1} on the visibility

t′(q) as described in Sec. 3.3.2. We constrain the visibility t′(q) to match the prior τ ′(q).

However, we find that the prior may be unreliable at pixels where τ ′ = 0, as we describe

in Sec. 3.3.2. Hence, we do not impose any visibility loss on such pixels and formulate

our visibility prior loss as

Lvip(q) = max(τ ′(q)− t′(q), 0). (3.8)
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Figure 3.2: A toy example to illustrate the computation of visibility prior. The scene

contains a blue sphere and a brown box and the relative pose between the views is a

translation in x direction. The secondary view image is warped to the primary view at

different depth planes to create a PSV and compared with the primary view image to

obtain error maps. We observe that the brown square and the blue circle are matched

better in the second and third planes respectively leading to lower error (denoted as

white) in the respective error maps. The minimum error across all the planes is thresh-

olded to obtain the visibility prior map corresponding to the primary view image. The

right portion of the sphere which is occluded in the secondary view image is denoted in

black in the visibility map.

Note that our loss function constrains the NeRF across pairs of views, unlike previous

works which regularize [128, 142] in a given view alone. We believe that this leads to a

better regularization for synthesizing novel views.

3.3.2 Visibility Prior

Given primary and secondary views, our goal is to estimate whether every pixel in

the primary view is also visible in the secondary view through a binary visibility prior

τ ′(q). We employ plane sweep volumes to compute the visibility prior. We illustrate

the computation of the visibility prior with a toy example in Fig. 3.2. Here, we warp

the image in the secondary view to the primary view using the camera parameters at
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different depths varying between the near depth zmin and far depth zmax. We sample D

depths uniformly in inverse depth similar to StereoMag [216]. The set of warped images

is referred to as plane sweep volume (PSV) [71].

Let I(1) be the image in the primary view and I
(2)
k be the set of D warped images,

where k ∈ {0, 1, . . . , D − 1} denotes the plane index. We then compute the error map

Ek of the warped secondary image with the primary image at each plane k of the PSV

as

Ek = ∥I(1) − I
(2)
k ∥1, (3.9)

where the norm is computed across the color channels. We determine the visibility prior

τ ′ for pixel q by thresholding the minimum error across all the planes as

e(q) = min
k

Ek(q),

τ ′(q) = 1{exp (−e(q)/γ)>0.5}, (3.10)

where γ is a hyper-parameter.

Intuitively, for a given pixel q, a lower error in any of the planes indicates the presence

of a matching pixel in the secondary view, i.e. q is visible in the secondary view. Note

that this holds true when the intensity of pixels does not change significantly across

views, which is typical for most of the objects in real-world scenes [96]. Consequently,

the absence of a matching point across all the planes may indicate that q is not visible in

the secondary view or q belongs to a highly specular object whose color varies significantly

across different viewpoints. Thus, our prior is used to regularize the NeRF only in the

first case above i.e. the pixels for which we find a match. Following the above procedure,

we obtain the visibility prior for every pair of images obtained from the training set, by

treating either image in the pair as the primary or the secondary view.



3.3. Method 29

3.3.3 Efficient Prediction of Visibility

Recall that imposing Lvip in Eq. (3.8) requires computing visibility T ′
i in the secondary

view for every pi. A naive approach to compute T ′
i involves sampling up to N points

along a secondary ray from the secondary view camera origin to pi and querying the

NeRF MLP F1 for each of these points. Thus, obtaining t′(q) in Eq. (3.7) requires

upto N2 MLP queries, which increases the training time making it computationally

prohibitive. We overcome this limitation by reformulating the NeRF MLP F2 to also

output a view-dependent visibility of a given 3D point as,

ci, T̂i = F2(hi, v); c′i, T̂ ′
i = F2(hi, v′

i), (3.11)

where v′
i is the viewing direction of the secondary ray. We use the MLP output T̂ ′

i instead

of T ′
i in Eq. (3.7).

Note that to output T̂ ′
i , we need not query F1 again and can reuse hi obtained from

Eq. (3.1). We only need to query F2 additionally and since F2 is a single layer MLP

and significantly smaller than F1, the additional computational burden is negligible.

Thus, directly obtaining the secondary visibility T̂ ′
i of pi through Eq. (3.11) allows us

to compute t′(q) in Eq. (3.7) using only N queries of the MLP F1, as opposed to N2

queries in the naive approach.

However, the use of T̂ ′
i in place of T ′

i regularizes the NeRF training only if the two

quantities are close to each other. Thus, we introduce an additional loss to constrain the

visibility T̂i output by F2 to be consistent with the visibility Ti computed using Eq. (3.3)

as

Lv =
N∑
i=1

((
SG(Ti)− T̂i

)2
+
(
Ti − SG(T̂i)

)2)
, (3.12)

where SG(·) denotes the stop-gradient operation. The first term in the above loss function

uses Ti as a target and brings T̂i closer to it. On the other hand, since T̂i gets additionally

updated directly based on the visibility prior, the second term helps transfer such updates
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to F1 more efficiently than backpropagation through F2.

3.3.4 Overall Loss

Similar to DS-NeRF [46], we also use the sparse depth given by an SfM model to supervise

the NeRF as

Lsd = ∥z − ẑ∥2, (3.13)

where z is the depth provided by the SfM model, ẑ =
∑

i wizi is the depth estimated

by NeRF and wi are obtained in Eq. (3.4). Our overall loss for ViP-NeRF is a linear

combination of the losses obtained in Eq. (3.6), Eq. (3.8), Eq. (3.12) and Eq. (3.13) as

L = λ1Lmse + λ2Lsd + λ3Lvip + λ4Lv, (3.14)

where λ1, λ2, λ3 and λ4 are hyper-parameters. We note that Lvip is always employed in

conjunction with Lv to make the learning computationally tractable.

3.4 Experiments

3.4.1 Evaluation Setup

We conduct experiments on two different datasets, namely RealEstate-10K and NeRF-

LLFF. We evaluate all the models in the more challenging setup of 2, 3, or 4 input

views, unlike prior work which use 9–18 input views [75, 142]. The test set is retained

to be the same across all different settings for both datasets.

RealEstate-10K [216] dataset is commonly used to evaluate view synthesis models [67,

172] and contains videos of camera motion, both indoor and outdoor. The dataset also

provides the camera intrinsics and extrinsics for all the frames. For our experiments, we

choose 5 scenes from the test set, each containing 50 frames with a spatial resolution of

1024×576. In each scene, we reserve every 10th frame for training and use the remaining
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45 frames for testing.

NeRF-LLFF [122] dataset is used to evaluate the performance of various NeRF Mod-

els including sparse input NeRF models. It consists of 8 forward-facing scenes with a

variable number of frames per scene at a spatial resolution of 1008 × 756. Following

RegNeRF [128], we use every 8th frame for testing. For training, we pick 2, 3 or 4 frames

uniformly among the remaining frames following RegNeRF [128].

Evaluation measures. We quantitatively evaluate the methods using LPIPS [215],

structural similarity (SSIM) [190], and peak signal to noise ratio (PSNR) measures. For

LPIPS, we use the v0.1 release with the AlexNet [86] backbone as suggested by the

authors.

3.4.2 Comparisons and Implementation Details

We compare the performance of our model with other sparse input NeRF models such

as DDP-NeRF [142] and DietNeRF [75] which use learned priors to constrain the NeRF

training. We also compare with DS-NeRF [46], InfoNeRF [83], and RegNeRF [128] that

do not use learned priors. We train the models for 50k iterations on both datasets using

the code provided by the respective authors.

For ViP-NeRF, we use Adam optimizer with a learning rate of 5e-4 that exponentially

decays to 5e-6 following NeRF [123]. We set the loss weights such that the magnitudes of

all the losses are of similar order after scaling. Specifically, we set λ1 = 1, λ2 = 0.1, λ3 =

0.001 and λ4 = 0.1. For visibility prior estimation, we set D = 64 and γ = 10. Since

we require T̂ ′
i to be close to T ′

i while using T̂ ′
i to compute Lvip, we impose Lvip after 20k

iterations. We train our models on a single NVIDIA RTX A4000 16GB GPU.

3.4.3 Results

We show the quantitative performance of ViP-NeRF and other competing models on

RealEstate-10K and NeRF-LLFF datasets in Tabs. 3.1 and 3.2. Our model outperforms
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Table 3.1: Quantitative results on RealEstate-10K dataset.

learned 2 views 3 views 4 views

Model prior LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑

InfoNeRF 0.6796 0.4653 12.30 0.6979 0.4024 11.15 0.6745 0.4298 11.52

DietNeRF ✓ 0.5730 0.6131 15.90 0.5365 0.6190 16.60 0.5337 0.6282 16.89

RegNeRF 0.5307 0.5709 16.14 0.4675 0.6096 17.38 0.4831 0.6068 17.46

DS-NeRF 0.4273 0.7223 21.40 0.3930 0.7554 23.73 0.3961 0.7575 24.24

DDP-NeRF ✓ 0.2527 0.7890 21.44 0.2240 0.8223 23.10 0.2190 0.8270 24.17

ViP-NeRF 0.1704 0.8087 24.48 0.1441 0.8505 27.21 0.1386 0.8588 28.13

Table 3.2: Quantitative results on NeRF-LLFF dataset.

learned 2 views 3 views 4 views

Model prior LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑

InfoNeRF 0.7561 0.2095 9.23 0.7679 0.1859 8.52 0.7701 0.2188 9.25

DietNeRF ✓ 0.7265 0.3209 11.89 0.7254 0.3297 11.77 0.7396 0.3404 11.84

RegNeRF 0.4402 0.4872 16.90 0.3800 0.5600 18.62 0.3446 0.6056 19.83

DS-NeRF 0.4548 0.5068 17.06 0.4077 0.5686 19.02 0.3825 0.6016 20.11

DDP-NeRF ✓ 0.4223 0.5377 17.21 0.4178 0.5610 17.90 0.3821 0.5999 19.19

ViP-NeRF 0.4017 0.5222 16.76 0.3750 0.5837 18.92 0.3593 0.6085 19.57

Figure 3.3: Qualitative examples on RealEstate-10K dataset with two input views. We

observe that the predictions of ViP-NeRF are close to the ground truth, while those of

other models suffer from various distortions. In particular, DDP-NeRF blurs regions of

the frame near the left door and contains black floater artifacts.
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Figure 3.4: Qualitative examples on RealEstate-10K dataset with two input views. We

observe sharp predictions by ViP-NeRF while predictions by other models suffer from

blur and other artifacts. In particular, DDP-NeRF predictions contain blurred flowers

(first row) and blurred tiles (second row).

Figure 3.5: Qualitative examples on RealEstate-10K dataset with three input views.

We find that ViP-NeRF is able to reconstruct novel views significantly better than the

competing models. DDP-NeRF extends parts of the white table and fails to reconstruct

the drawer handles accurately in the first and second examples. In the third example,

DDP-NeRF fails to reconstruct thin objects in the chair.
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Figure 3.6: Qualitative examples on RealEstate-10K dataset with four input views. In

the first example, DDP-NeRF fails to retain the structure of the chair while it blurs the

texture of the carpet in the second example. We observe even more severe distortions

among the predictions of other models.

Figure 3.7: Qualitative examples on NeRF-LLFF dataset with two input views. In the

first and third examples, we observe floater artifacts (blue arrows) in the predictions of

DS-NeRF and DDP-NeRF, which are mitigated in the predictions of ViP-NeRF. We find

that RegNeRF fails to capture thin t-rex bone in the second example and breaks the

horn into two pieces in the third example (magenta arrows). Cyan arrows indicate color

changes in the predictions of DDP-NeRF in the second and fourth examples. We note

that predictions by our model do not suffer from the above described artifacts.
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Figure 3.8: Qualitative examples on RealEstate-10K and NeRF-LLFF dataset with two,

three, and four input views. We observe that ViP-NeRF models specular regions better

as the number of input views increases. For example, in the first row, the reflection of

the chair is better reconstructed as the number of views increases.

all the competing models, particularly in terms of the perceptual metric, LPIPS. ViP-

NeRF even outperforms models such as DDP-NeRF and DietNeRF which involve pre-

training on a large dataset. Fig. 3.3 shows qualitative comparisons on a scene from the

RealEstate-10K dataset, where we observe significantly better synthesis by our model as

compared to the competing models. We show more qualitative comparisons in Figs. 3.4

to 3.7. In these samples, we find that ViP-NeRF removes most of the floater artifacts

and successfully retains the shapes of objects. Video comparisons are available on our

project webpage1.

In Fig. 3.8, we qualitatively compare the predictions of our model with different

numbers of input views. We observe that ViP-NeRF estimates the geometry reasonably

well with even two input views. However, with more input views, the performance of

ViP-NeRF improves in reflective or specular regions. Fig. 3.9 visualizes the visibility

map predicted by ViP-NeRF, where we observe that it is able to accurately predict the

regions in the primary image which are visible and occluded in the secondary image.

1https://nagabhushansn95.github.io/publications/2023/ViP-NeRF.html
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Figure 3.9: Visualization of the visibility map predicted by ViP-NeRF. White indicates

the regions of the ‘Primary View’ which are visible in the ‘Secondary View’ and black

indicates the occluded regions. From the primary and secondary views, we observe that

the left part of the fortress and the neighboring portion of the wood are hidden in the

secondary view. ViP-NeRF is able to reasonably determine the visible and occluded

regions.

Table 3.3: Comparison of reliability of priors used in different models. The reference

visibility is obtained using NeRF trained with dense input views.

RealEstate-10K NeRF-LLFF

model Prec. ↑ Rec. ↑ F1 ↑ Prec. ↑ Rec. ↑ F1 ↑

ViP-NeRF 0.97 0.83 0.89 0.82 0.85 0.83

DDP-NeRF 0.98 0.53 0.66 0.86 0.33 0.47
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Dense depth vs dense visibility. The key idea of our work is that it may be possible

to reliably estimate dense visibility than dense depth. From Tab. 3.1, we find that ViP-

NeRF outperforms DDP-NeRF consistently, which indicates that the dense visibility

prior we compute without any pre-training is superior to the learned dense depth prior

used by DDP-NeRF. Further from Tab. 3.2, we observe that ViP-NeRF consistently

improves over DS-NeRF in terms of LPIPS and SSIM, whereas DDP-NeRF does not.

This may be due to the domain shift between the training dataset of DDP-NeRF and

the LLFF dataset, resulting in no performance improvement over DS-NeRF. Thus,

we conclude that augmenting sparse depth with dense visibility leads to better view

synthesis performance than dense completion of the sparse depth. We further validate

this conclusion by comparing the two priors in the following.

Validating priors. We compare the reliability of the dense visibility prior used in our

model against the dense depth prior from DDP-NeRF. For this comparison, we convert

the dense depth to visibility and compare it with the visibility prior of our approach.

Specifically, we warp the image in the secondary view to the primary view using the

dense depth prior and compute the visibility map similar to Eq. (3.10). We compare

the visibility maps obtained using dense depth and our approach with the visibility map

predicted by a NeRF model trained with dense input views. We evaluate the visibility

maps in terms of precision, recall, and F1 score.

From Tab. 3.3, we observe that our approach significantly outperforms DDP-NeRF

prior in terms of the recall and F1 score, while performing similarly in terms of precision.

A high precision of our prior indicates that it makes very few mistakes when imposing

Lvip. On the other hand, a high recall shows that our prior is able to capture most of

the visible regions where Lvip needs to be imposed. On the contrary, a low recall for the

DDP-NeRF prior indicates that large regions that are actually visible in the secondary

view are marked as occluded by the dense depth prior. Consequently, this indicates the

presence of a large number of pixels with inaccurate depth in the prior of DDP-NeRF.

Thus, we conclude that our visibility prior is more reliable than the dense depth prior

from DDP-NeRF for training the NeRF.
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Table 3.4: Evaluation of depth estimated by different models with two input views. The

reference depth is obtained using NeRF trained with dense input views. The depth

RMSE on the two datasets are of different orders on account of different depth ranges.

RealEstate-10K NeRF-LLFF

model RMSE ↓ SROCC ↑ RMSE ↓ SROCC ↑

ViP-NeRF 1.6411 0.7702 45.6314 0.6184

DDP-NeRF 1.7211 0.7544 46.6268 0.6136

As discussed in Sec. 3.1, visibility is related to relative depth, and thus a prior on

visibility only constrains the relative depth ordering of the objects. On the other hand,

the dense depth prior constrains the absolute depth, perhaps incorrectly. Thus the

visibility prior provides more freedom to the NeRF in reconstructing the 3D geometry

and is also more reliable compared to the depth prior. This may explain the superior

performance of visibility regularization over dense depth regularization.

Evaluation of estimated depth. It is believed that better performance in synthesizing

novel views is directly correlated with the accuracy of depth estimation [46]. Thus, we

compare our model with DDP-NeRF on their ability to estimate absolute depth correctly

using root mean squared error (RMSE). We also evaluate the models on their ability to

estimate the relative depth of the scene correctly using spearman rank-order correlation

coefficient (SROCC) [43], which computes the linear correlation between ranks of the

estimated pixel depths with that of the ground truth depth. Due to the unavailability of

ground truth depth on both the datasets, we train a NeRF model with dense input views

and use its predicted depth as a pseudo ground truth. From Tab. 3.4, we observe that

our model consistently outperforms DDP-NeRF both in terms of absolute and relative

depth. Fig. 3.10 shows that the depth estimated by DDP-NeRF is smooth in textured

regions, which may be leading to blur in the synthesized frame. In contrast, the dense

visibility prior used in our model allows NeRF to predict sharp depth in such regions

leading to sharper frame predictions.
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Figure 3.10: Estimated depth map on RealEstate-10K dataset with two input views. We

find that ViP-NeRF is better in both frame synthesis and depth estimation compared to

the competing models. For example, in the first row, the depth estimated by DDP-NeRF

is smooth which may be leading to a loss of sharpness in synthesizing the shrubs. In

contrast, ViP-NeRF predictions are sharper. For better visualization, we show inverse

depth and normalize it to set the maximum value to unity.

Table 3.5: Ablation experiments on both the datasets with two input views.

RealEstate-10K NeRF-LLFF

model LPIPS ↓ SSIM ↑ LPIPS ↓ SSIM ↑

ViP-NeRF 0.1704 0.8087 0.4017 0.5222

w/o sparse depth 0.2754 0.7588 0.5056 0.4631

w/o dense visibility 0.4273 0.7223 0.4548 0.5068
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(a) Qualitative examples for ablations on RealEstate-10K and NeRF-LLFF dataset. We observe

that the absence of dense visibility prior leads to significant blur in the predicted frames.

While the reconstruction is reasonable without the sparse depth prior, we obtain the best

reconstructions when using both the priors.

(b) Scene-wise LPIPS scores of ViP-NeRF and the ablated models. Note that lower LPIPS

scores are better. ViP-NeRF performs better than both the ablated models in most cases

leading to overall better performance.

Figure 3.11: Qualitative and quantitative comparisons of ablated models on both

RealEstate-10K and NeRF-LLFF datasets.
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Table 3.6: Training times for various sparse input NeRF methods.

Model Training Time (hours)

InfoNeRF 8

RegNeRF 10

DS-NeRF 8

DDP-NeRF 4

ViP-NeRF 8.5

Ablations. We analyze the contributions of dense visibility and sparse depth priors in

ViP-NeRF, by disabling them one at a time. From Tab. 3.5 and Fig. 3.11a, we find that

removing either priors leads to a drop in performance on both the datasets. This suggests

that the dense visibility prior may be providing information that is complementary to

the sparse depth prior. For a more fine-grained analysis, we compare the LPIPS scores

on individual scenes in Fig. 3.11b. We observe that the addition of dense visibility

prior over sparse depth prior leads to an improvement in the performance on all the

scenes. Further, we find that our model with dense visibility prior alone is able to

achieve impressive performance, especially on the RealEstate-10K dataset.

We now analyze the importance of the sparse depth prior against the dense visibility

prior across different scenes. The performance of the NeRF with sparse depth prior is

better than that of the visibility prior in the scenes where the sparse depth is available

for a large number of pixels. Specifically, for highly textured scenes such as those in the

NeRF-LLFF dataset, we can obtain the sparse depth for more pixels (762, 1045, and

1524 pixels on average with 2, 3, and 4 input views). On the other hand, for scenes with

smooth objects such as walls, floor or ceiling in RealEstate-10K dataset, we can only

obtain the sparse-depth prior for fewer pixels (328, 496, and 614 pixels on average with

2, 3, and 4 input views). In such scenes, the visibility prior tends to be more useful.

Incorporating both the priors leads to the best performance in all the scenes.

Comparison of training times. Tab. 3.6 shows the training times for various sparse in-
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put NeRF methods. Since we use DS-NeRF as our base model and add only a single layer

to predict visibility, we observe very little overhead as compared to DS-NeRF. However,

DDP-NeRF employs a single NeRF instead of coarse and fine NeRFs and achieves the

hierarchical sampling of 3D points using the estimated depth and its variance. Hence,

DDP-NeRF requires lesser time for training.

3.5 Summary

We study the problem of training NeRFs in sparse input scenarios, where the NeRF

tends to overfit the input views and learn incorrect geometry. We propose a prior on the

visibility of pixels in other viewpoints to regularize the training and mitigate such errors.

The visibility prior obtained using a plane sweep volume is more reliable as compared to

the depth prior estimated using pre-trained networks. We reformulate the NeRF MLPs

to additionally output visibility to compute the visibility prior loss in a time-efficient

manner. ViP-NeRF outperforms prior work on two commonly used datasets for novel

view synthesis.



Chapter 4

Simple-RF: Regularizing Sparse

Input Radiance Fields with Simpler

Solutions

4.1 Introduction

In Chapter 3, we find that a dense visibility prior is better than dense depth priors ob-

tained using deep depth estimation networks for training Neural Radiance Fields (NeRF)

with sparse input views. However, the visibility prior is not as rich as the depth prior.

In this chapter, we explore learning scene-specific dense depth supervision that does not

suffer from generalization issues. Further, NeRFs have been enhanced to optimize and

render quickly [125], reduce aliasing artifacts [16], and learn on unbounded scenes [17].

However, all these models require tens to hundreds of images per scene to learn the

scene geometry accurately, and their quality deteriorates significantly when only a few

training images are available [75]. In this chapter, we focus on training both implicit

radiance fields such as NeRF and explicit radiance fields such as TensoRF [33] and Zip-

NeRF [18] with a sparse set of input images. We achieve this by designing augmented

This chapter is based on the work published at SIGGRAPH Asia 2023 [156] and preprint [157].

43
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Figure 4.1: We show the improvements achieved by our regularizations on the NeRF, Ten-

soRF and ZipNeRF models on NeRF-LLFF, RealEstate-10K and MipNeRF360 datasets

respectively. We observe that the vanilla radiance fields suffer from various distortions.

Regularizing the radiance fields with simpler solutions leads to significantly better re-

constructions with all the three radiance fields.
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models that learn better depth supervision in certain regions of the scene and train these

augmented models in tandem with the main radiance field. The depth estimated by

these augmented models can be used to effectively supervise the main radiance field in

the sparse input setting. Fig. 4.1 qualitatively shows the improvements achieved through

our regularizations on NeRF, TensoRF and ZipNeRF on three different datasets.

We note that despite the recent work on sparse input 3DGS models, we do not explore

designing augmentations for 3DGS. As noted in the recent literature, 3DGS mainly

suffers from poor initialization with few input views [38]. We believe 3DGS requires a

combination of good initialization and supervision from augmentations to learn from few

input views. This necessitates a separate study on designing better initializations for

3DGS, which is beyond the scope of this work.

4.2 Radiance Fields and Volume Rendering Prelim-

inaries

We first provide a brief recap of the radiance fields and volume rendering. We also

describe the notation required for other sections in this chapter. To render a pixel q, we

shoot the corresponding ray into the scene and sample N 3D points p1, p2, . . . , pN , where

p1 and pN are the closest to and farthest from the camera, respectively. At every 3D

point pi, the radiance field F = F1 ◦ F2 is queried to obtain a view-independent volume

density σi and a view-dependent color ci as

σi, hi = F1(pi), ci = F2(hi, v), (4.1)

where v is the viewing direction and hi is a latent feature of pi. Volume rendering is

then applied along every ray to obtain the color for each pixel as c =
∑N

i=1 wici, where
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Figure 4.2: Architecture of Simple-RF family of models. We train the augmented model

that only learns simpler solutions in tandem with the main model. The augmented

models learn better depth in certain regions, which is propagated to the main model

through the depth supervision loss Laug. During inference, only the Main Model is

employed.

the weights wi are computed as

wi = exp
(
−

i−1∑
j=1

δjσj

)
· (1− exp (−δiσi)) , (4.2)

and δi is the distance between pi and pi+1. The expected ray termination length is

computed as z =
∑N

i=1 wizi, where zi is the depth of pi. z is typically also used as the

depth of the pixel q [46]. F1 and F2 are modelled differently for NeRF, TensoRF and

ZipNeRF, and are trained using the photometric loss Lph = ∥c− ĉ∥2, where ĉ is the true

color of q.

4.3 Method

Learning a radiance field with sparse input views leads to overfitting on the input views

with severe distortions in novel views. Our key observation is that most of the distortions

are due to the sub-optimal use of the high capabilities of the radiance field model.

Further, we find that reducing the capability of the radiance field helps constrain the

model to learn only simpler solutions, which can provide better depth supervision in
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certain regions of the scene. However, the lower capability models are not optimal either

since they cannot learn complex solutions where necessary. Our solution here is to use

the higher capability model as the main model and employ the lower capability models

as augmentations to provide guidance on where to use simpler solutions. The challenge is

that, it is not known apriori where one needs to employ supervision from the augmented

model. We determine the more accurate model among the main and augmented models

in terms of the estimated depth and use the more reliable depth to supervise the other.

We note that the augmented models are employed only during the learning phase and not

during inference. Thus, there is no additional overhead during inference. The augmented

models are similar to the main model, but we modify their parameters to reduce their

capability, and train them in tandem with the main model.

To design the augmented models, we first analyze the shortcomings of the radiance

field with sparse input views. Specifically, we determine the components of the model

that cause overfitting with fewer input views, causing distortions in novel views. We

then design the augmented models by reducing the model capability with respect to

such components. Thus, designing the augmented models is non-trivial, and the design

may need to be different for different radiance fields based on the architecture of the

radiance fields and the distortions observed. Nonetheless, the core idea of designing

augmentations by reducing their capability to learn simpler solutions is common across

all radiance fields.

We discuss the design of augmentations for NeRF, TensoRF and ZipNeRF in Secs. 4.3.1

to 4.3.3 respectively. We describe our approach to determining the reliability of the depth

estimates in Sec. 4.3.1.4. Finally, Sec. 4.3.4 summarizes all the loss functions used to

train our full model. Fig. 4.2 shows the architecture of our family of simple radiance

fields.

4.3.1 Simple-NeRF

We start by discussing the specific details of the NeRF that are relevant for the design

of augmentations in Sec. 4.3.1.1, then analyze the shortcomings of the NeRF with sparse
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Figure 4.3: Architecture of Simple-NeRF. We train two augmented NeRF models in

tandem with the main NeRF. In smoothing augmentation, we reduce the positional

encoding frequencies that are input to N s
1 and concatenate the remaining frequencies to

the input of N s
2 . For Lambertian augmentation, we ask N l

2 to output the color based on

position alone, independent of the viewing direction. We add depth supervision losses Ls

and Ll between the coarse NeRFs of the main and augmented models and a consistency

loss Lcfc between the coarse and fine NeRFs of the main model. During inference, only

the Main Model is employed.

input views in Sec. 4.3.1.2 and finally discuss the design of augmentations in Sec. 4.3.1.3.

Fig. 4.3 shows the detailed architecture of Simple-NeRF.

4.3.1.1 NeRF Preliminaries

The NeRF learns the radiance field F using two neural networks N1,N2 and predicts

the view-independent volume density σi and view-dependent color ci as

σi, hi = N1 (γ(pi, 0, lp)) ; ci = N2 (hi, γ(v, 0, lv)) , (4.3)

where v is the viewing direction, hi is a latent feature of pi and

γ(x, d1, d2) = [sin(2d1x), cos(2d1x), . . . , sin(2d2−1x), cos(2d2−1x)] (4.4)
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is the positional encoding from frequency d1 to d2. lp and lv are the highest positional

encoding frequencies for pi and v respectively. When d1 = 0, x is concatenated to the

positional encoding features in Eq. (4.4). NeRF circumvents the need for the dense

sampling of 3D points along a ray by employing two sets of MLPs, a coarse NeRF and a

fine NeRF, both trained using Lph. The coarse NeRF is trained with a coarse stratified

sampling, and the fine NeRF with dense sampling around object surfaces, where object

surfaces are coarsely localized based on the predictions of the coarse NeRF. Since the

scene geometry is mainly learned by the coarse NeRF, we add the augmentations only

to the coarse NeRF.

4.3.1.2 Analysing Sparse Input NeRF

With sparse input views, we find that two components of the NeRF, namely positional-

encoding and view-dependent radiance, can cause overfitting, leading to distortions in

novel views. Both positional encoding and view-dependent radiance are elements de-

signed to increase the capability of the NeRF to explain different complex phenomena.

For example, the former helps in learning thin objects against a farther background, and

the latter helps in learning specular objects. However, when training with sparse views,

the fewer constraints coupled with the higher capacity of the NeRF lead to solutions

that overfit the observed images and learn implausible scene geometries. Specifically,

the high positional encoding degree leads to undesired depth discontinuities in smooth-

depth regions resulting in floater artifacts, where a part of an object is broken away from

it and floats freely in space [17], as shown in Fig. 4.4a. The view-dependent radiance

causes shape-radiance ambiguity, leading to duplication artifacts in the novel views as

shown in Fig. 4.4b. With sparse input views, the NeRF explains different objects by

varying the color of the same 3D points based on the viewing direction, thereby giving

us an illusion of the object without learning the correct geometry of the object. This

is, in a way, similar to the illusion created by lenticular images and can be observed

better in the supplementary video on our project page. Our augmentations consist of

reducing the capability of the NeRF model with respect to the positional encoding and
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(a) Floater artifacts: We visualize the depth learned by the NeRF model for an input frame

from the NeRF-LLFF flower scene.

(b) Duplication artifacts: To visualize the duplication artifacts that arise due to the shape-

radiance ambiguity in sparse-input NeRF, we render an input frame by only changing the

viewing direction. This is an example from the NeRF-LLFF room scene.

Figure 4.4: Failure of sparse-input NeRF: We show two shortcomings of the NeRF

when trained with two input views on the NeRF-LLFF dataset. In Fig (a), we observe the

floaters as small orange regions in the depth map. In Fig (b), we observe the duplication

of the object on the table caused by the NeRF trying to blend the input images. Simple-

NeRF introduces regularizations to mitigate these distortions as seen in both figures.

We note that the models used to synthesize the above images include the sparse depth

supervision (Sec. 4.3.4).
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view-dependent radiance to obtain better depth supervision.

4.3.1.3 Design of Augmentations

We employ two augmentations, one each for regularizing positional encoding and view-

dependent radiance, which we describe in the following. We refer to the two augmenta-

tions as smoothing and Lambertian augmentations, respectively.

Smoothing augmentation: The positional encoding maps two nearby points in R3 to

two farther away points in R3(2lp+1) allowing the NeRF to learn sharp discontinuities in

volume density between the two points in R3 as a smooth function in R3(2lp+1). We reduce

the depth discontinuities, which are caused by discontinuities in the volume density, by

reducing the highest positional encoding frequency for pi to lsp < lp as

σi, hi = N s
1 (γ(pi, 0, l

s
p)), (4.5)

where N s
1 is the MLP of the augmented model. The main model is more accurate where

depth discontinuities are required, and the augmented model is more accurate where

discontinuities are not required. We determine the respective locations as binary masks

and use only the reliable depth estimates from one model to supervise the other model,

as we explain in Sec. 4.3.1.4.

Since color tends to have more discontinuities than depth in regions such as textures,

we include the remaining high-frequency positional encoding components of pi in the

input for N2 as

ci = N s
2 (hi, γ(pi, l

s
p, lp), γ(vi, 0, lv)). (4.6)

Note that hi already includes the low-frequency positional encoding components of pi.

Lambertian Augmentation: The ability of the NeRF to predict view-dependent radi-

ance helps it learn non-Lambertian surfaces. With fewer images, the NeRF can simply

learn any random geometry and change the color of 3D points in accordance with the
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Figure 4.5: Determining the reliability of depths for supervision: We choose

the depth that has higher similarity, with respect to the patches reprojected to the

nearest input view, to supervise the other model (Sec. 4.3.1.4). The patches are only

representative and are not to scale.

input viewpoint to explain away the observed images [214]. To guard the NeRF against

this, we disable the view-dependent radiance in the second augmented NeRF model to

output color based on pi alone as

σi, hi = N l
1(γ(pi, 0, lp)); ci = N l

2(hi), (4.7)

We note that while the augmented model is more accurate in Lambertian regions, the

main model is better equipped to handle specular objects. We determine the respective

locations as we explain in the following and use only the reliable depth estimates for

supervision.

4.3.1.4 Determining Reliable Depth Estimates

Let the depths estimated by the main and augmented models for pixel q be zm and za

respectively. We now seek to determine the more accurate depth among the two. Fig. 4.5
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shows our approach to determining the reliability of the estimated depth. Specifically,

we reproject a k × k patch around q to the nearest training view using both zm and za.

We then compute the similarity of the reprojected patch with the corresponding patch

in the first image using the mean squared error (MSE) in intensities. We choose the

depth corresponding to lower MSE as the reliable depth. To filter out the cases where

both the main and augmented models predict incorrect depth, we define a threshold eτ

and mark the depth to be reliable only if its MSE is also less than eτ . If em and ea are

the reprojection MSE corresponding to zm and za respectively, we compute a mask ma

that indicates where the augmented model is more reliable as

ma =

1 if (ea ≤ em) and (ea ≤ eτ )

0 otherwise .

(4.8)

We compute the reliability mask mm for the main model similarly. We now impose the

depth supervision as

Laug = 1{ma=1} ⊙ ∥zm −��∇(za)∥2 + 1{mm=1} ⊙ ∥��∇(zm)− za∥2, (4.9)

where ⊙ denotes element-wise product, 1 is the indicator function and ��∇ is the stop-

gradient operator. We impose two losses, Ls for the smoothing augmentation and Ll for

the Lambertian augmentation. The final depth supervision loss is the sum of the two

losses.

For specular regions, the intensities of the reprojected patches may not match, lead-

ing to the masks being zero. This only implies supervision for fewer pixels and not

supervision with incorrect depth estimates.

4.3.1.5 Hierarchical Sampling

Since multiple solutions can explain the observed images in the few-shot setting, the

coarse and fine MLP of the NeRF may converge to different depth estimates for a given

pixel as shown in Fig. 4.6b. Thus, dense sampling may not be employed around the
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(a) The above images correspond to the NeRF-LLFF horns scene. We enlarge a small region

of the frame to better observe the improvement in sharpness.

(b) Histogram of depth values predicted by the coarse and fine NeRF models for the image

patch shown in Fig (a).

Figure 4.6: Ineffective hierarchical sampling in sparse-input NeRF: Fig (b) shows

that the coarse and fine models in the NeRF converge to different depth estimates when

training with sparse input views. This leads to ineffective hierarchical sampling, resulting

in blurry predictions in Fig (a). By predicting consistent depth estimates with the help of

Lcfc, Simple-NeRF predicts consistent depth estimates leading to sharp reconstructions.

We note that the models used to synthesize the above images include the sparse depth

supervision (Sec. 4.3.4).
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region where the fine NeRF predicts the object surface, which is equivalent to using only

the coarse sampling for the fine NeRF. This can lead to blur in rendered images as seen

in Fig. 4.6a. To prevent such inconsistencies, we drive the two NeRFs to be consistent

in their solutions by imposing an MSE loss between the depths predicted by the two

NeRFs. If zc and zf are the depths estimated by the coarse and fine NeRFs respectively,

we define the coarse-fine consistency loss as

Lcfc = 1{mf=1} ⊙ ∥zc −��∇(zf )∥2 + 1{mc=1} ⊙ ∥��∇(zc)− zf∥2, (4.10)

where the masks mc and mf are determined as we describe in Sec. 4.3.1.4.

Apart from enforcing consistency between the coarse and fine NeRF models, Lcfc

provides two additional benefits. Without Lcfc, the augmentations need to be imposed

on the fine NeRF as well, leading to an increase in the training time and memory require-

ments. Secondly, if one of the coarse or fine NeRFs converges to the correct solution,

Lcfc helps quickly convey the knowledge to the other NeRF, thereby facilitating faster

convergence.

4.3.2 Simple-TensoRF

We first provide a brief overview of TensoRF [33] in Sec. 4.3.2.1 and also describe the

notation required to explain the design of our augmentations. We discuss the distor-

tions observed with sparse input TensoRF in Sec. 4.3.2.2 and then discuss the design of

augmentations in Sec. 4.3.2.3.

4.3.2.1 TensoRF Preliminaries

TensoRF models the fields F1 and F2 with a tensor G1 and a tiny MLP N2, respectively.

The 3D tensor G1 is factorized as the sum of outer products of 1D vectors v and 2D

matrices M. Specifically, G1 consists of two 3D tensors, Gσ to learn the volume density
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and Gc to learn the latent features of the color as

Gσ =
Rσ∑
r=1

vX
σ,r ◦ MY Z

σ,r +
Rσ∑
r=1

vY
σ,r ◦ MXZ

σ,r +
Rσ∑
r=1

vZ
σ,r ◦ MXY

σ,r , (4.11)

Gc =
Rc∑
r=1

vX
c,r ◦ MY Z

c,r ◦ a3r−2 +
Rc∑
r=1

vY
c,r ◦ MXZ

c,r ◦ a3r−1 (4.12)

+
Rc∑
r=1

vZ
c,r ◦ MXY

c,r ◦ a3r,

σi = sigmoid(Gσ(pi)); hi = Gc(pi), (4.13)

where ◦ represents the outer product, and Rσ and Rc represent the number of components

in the factorization of sigma and color grids, respectively. G(pi) is obtained by trilinearly

interpolating G at pi. vX ∈ RI and MY Z ∈ RJ×K represent the vector along the x-axis

and the matrix in the yz-plane respectively and so on, where I, J and K represent the

resolution of the tensor in the x, y and z dimensions respectively. Thus, the total number

of voxels in the tensor is Nvox = I×J×K. Note that Gc uses an additional vector ar ∈ RD

to learn appearance as a latent feature of dimension D.

TensoRF assumes that the entire scene is contained within a 3D bounding box b as

shown in Fig. 4.7b, whose vertices are given by {(bx1 , bx2), (by1 , by2), (bz1 , bz2)}. TensoRF

handles unbounded forward-facing scenes by transforming the space into normalized

device coordinates (ndc) similar to the NeRF. The coarse to fine training is implemented

by using lower resolution tensors Gσ and Gc during the initial stages of the optimization

and gradually increasing the resolution as the training progresses. Finally, the color at

pi is obtained using the tiny MLP N2 as

ci = N2(hi, γ(v, 0, lv)), (4.14)

where γ is the positional encoding described by Eq. (4.4). Thus, we note that F2 = γ◦N2.

The color of the pixel is then obtained through volume rendering using σi and ci as in

Sec. 4.2. For further details, we refer the readers to TensoRF [33].
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(a) Floater artifacts: We visualize the depth learned by the TensoRF model for an input frame

from the NeRF-LLFF room scene.

(b) Objects close to camera: We illustrate TensoRF incorrectly placing objects close to the

cameras using a toy example.

Figure 4.7: Failure of sparse-input TensoRF: We show the two shortcomings of

TensoRF when trained with few input views. In Fig (a), the orange regions indicate

the floaters. For reference, we also show the depth learned by Simple-TensoRF, which

is free from floaters. We note that the models used to synthesize these images include

the sparse depth supervision (Sec. 4.3.4). In Fig (b), the image on the left depicts the

true scene, which can be accurately learned by the TensoRF model provided with dense

input views. The image on the right illustrates how TensoRF can incorrectly place the

objects yet perfectly reconstruct the input views, when training with few input views.
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4.3.2.2 Analysing Sparse Input TensoRF

When training a TensoRF model with sparse input views, we find that three of its

components cause overfitting, leading to distortions in novel views. Employing a higher

resolution tensor Gσ with a large number of components Rσ allows the TensoRF to

learn sharp depth edges, but results in undesired depth discontinuities in smooth regions

causing floaters as shown in Fig. 4.7a. Further, the large bounding box b allows the

TensoRF to handle objects that are truly very close to the camera. On account of large

distances between cameras when only a few input views are available, it may be possible

to place objects close to one camera such that they are out of the field of view of the

other cameras, even for objects visible in multiple input views. Specifically, TensoRF

learns multiple copies of the same object, each visible in only one input view, thereby

explaining the observations without learning the geometry of the objects as shown in

Fig. 4.7b. We design the augmentations to reduce the capability of the TensoRF model

with respect to these three components.

4.3.2.3 Design of Augmentations

Employing a high-resolution and high-rank tensor Gσ enables TensoRF to learn signifi-

cantly different σ values for two nearby points in R3 leading to undesired depth discon-

tinuities in smooth regions. We constrain the augmented TensoRF to learn only smooth

and continuous depth surfaces by reducing the number of components to Rs
σ < Rσ and

also reducing the number of voxels of Gσ from to N s
vox < Nvox. We note that modifying

only one of these components is insufficient to achieve the desired smoothing. For ex-

ample, only reducing the resolution of the grid allows TensoRF to learn sharp changes

in σ at the voxel edges, leading to block artifacts. On the other hand, only reducing the

number of components allows TensoRF to learn sharp changes in σ on account of the

high-resolution grid.

Further, we find that reducing Rσ to Rs
σ leads to the augmented TensoRF learning

cloudy volumes instead of hard object surfaces. We encourage the augmented TensoRF
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to learn hard surfaces by employing a mass concentration loss that minimizes the entropy

of mass, grouped into Nmc intervals as

Lmc = H


j(N/Nmc)∑

i=(j−1)(N/Nmc)+1

wi


Nmc

j=1

 , (4.15)

where H(w1, w2, . . . , wn) =
∑n

i=1(−wi logwi) is the entropy operator, N is the number

of 3D points pi along a ray and wi is the weight corresponding to pi as described in

Eq. (4.2).

Objects that are incorrectly placed close to the camera due to a large bounding box

are typically smooth in depth and hence are not mitigated by the above augmentation.

We design a second augmentation to mitigate such distortions by reducing the size of

the bounding box b along the z-axis by increasing bz1 to bsz1 . We note that replicating

the same in the main TensoRF model could lead to distortions in objects that are truly

close to the camera. In practice, we find that including both the augmentations in a

single augmented TensoRF model works reasonably well, and hence we employ a single

augmented model. We then use the reliable depth estimates from the augmented model

to supervise the main model as in Eq. (4.9).

4.3.3 Simple-ZipNeRF

ZipNeRF [18] integrates the iNGP model [125], which achieves significant improvements

in optimization and rendering times, with the anti-aliasing ability of MipNeRF [16] and

the ability to handle unbounded 360◦ scenes of MipNeRF360 [17]. Our contributions

to enable the training of ZipNeRF with sparse input views are mainly with respect

to the components of the iNGP model, and hence, we believe that the augmentations

designed for ZipNeRF are relevant to iNGP as well. We discuss the specific components

of ZipNeRF that are relevant in our augmentations in Sec. 4.3.3.1, analyze the limitations

of ZipNeRF with sparse input views in Sec. 4.3.3.2 and then discuss the design of our

augmentations in Sec. 4.3.3.3.
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(a) Floater artifacts: We visualize the depth learned by the ZipNeRF model for an input frame

from the MipNeRF360 kitchen scene.

(b) Objects close to camera: We illustrate ZipNeRF incorrectly placing objects close to the

cameras using a toy example.

Figure 4.8: We show two shortcomings of ZipNeRF when trained with few input views.

In Fig (a), while the RGB frame for an input view is reconstructed perfectly, we observe

floaters in the depth image, shown by the dark-blue regions. For reference, we also show

the depth learned by Simple-ZipNeRF, which is free from floaters and better reconstructs

the scene. In Fig (b), the image on the left depicts the true scene, which can be accurately

learned by the ZipNeRF model provided with dense input views. The image on the right

illustrates how the sparse-input ZipNeRF model can incorrectly place parts of the object

close to the cameras, yet perfectly reconstruct the input views.
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4.3.3.1 ZipNeRF Preliminaries

ZipNeRF employs a multi-resolution grid and a hash function that maps every vertex

of the grid to an entry in a hash table. The hash table contains the latent features

representing the volume density and the radiance. Concretely, given a point pi ∈ R3,

the vertices of the voxel enclosing pi are mapped to an entry in a hash table of length T

through the use of hash function H1 as,

H1(p) =
(

3⊕
j=1

pjπj

)
mod T, (4.16)

where ⊕ denotes the bit-wise XOR operation, πj is a prime number, and pj is the j-th

coordinate of p. The feature vectors corresponding to the eight vertices of the voxel

are trilinearly interpolated. The same procedure is repeated for every level of the multi-

resolution grid, and the corresponding interpolated features are concatenated to form the

latent feature H1(pi). Two tiny MLPs are employed to decode H1(pi) into the volume

density and the radiance as

σi, hi = N1(H1(pi)); ci = N2(hi, γ(v, 0, lv)), (4.17)

where γ is the positional encoding as defined in Eq. (4.4). We note that F1 and F2 in

Eq. (4.1) are thus represented as F1 = H1 ◦N1 and F2 = γ ◦N2. The color of the pixel is

then obtained through volume rendering using σi and ci as in Sec. 4.2. Note that multiple

vertices in the grid could map to the same entry in the hash table at every level. iNGP

and ZipNeRF rely on the MLP N1 to resolve such collisions based on multi-resolution

features. Unbounded scenes are handled by employing a contraction function that maps

the distance along the ray from z ∈ [znear, zfar] to a normalized distance s ∈ [0, 1]. The

3D points pi are then sampled in s-domain. For further details, we refer the readers to

iNGP [125] and ZipNeRF [18].
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4.3.3.2 Analysing Sparse Input ZipNeRF

We find that two components of ZipNeRF tend to cause overfitting when trained with

sparse input views, leading to distortions in novel views. Firstly, employing a hash table

with a large size T enables ZipNeRF to learn sharp depth edges, but introduces undesired

depth discontinuities in smooth regions, causing floaters as shown in Fig. 4.8a. Secondly,

since ZipNeRF handles unbounded 360◦ scenes, it learns the radiance field over the entire

3D space. Similar to TensoRF, ZipNeRF tends to incorrectly place multiple copies of

objects very close to the camera without learning the correct geometry as shown in

Fig. 4.8b. Thus, we design the augmentations to reduce the capability of the ZipNeRF

model with respect to these two components.

4.3.3.3 Design of Augmentations

Employing a hash table of larger size T allows ZipNeRF to avoid collisions and not share

features across multiple 3D points. This enables ZipNeRF to map two nearby points in

R3 to two independent entries in the hash table, thus mapping them to two farther away

points in the latent feature space. This allows the MLP N1 to learn discontinuities in

the volume density, resulting in sharp depth edges. We encourage the augmented model

to share features across more 3D points by reducing the size of the hash table to T s < T .

To mitigate the objects being placed close to the camera incorrectly, we cannot reduce

the size of the bounding box as in TensoRF, since ZipNeRF handles unbounded scenes.

We achieve a similar effect by sampling the 3D points pi along the ray in s-domain in

the range s ∈ [snear, 1] instead of s ∈ [0, 1]. This ensures that the objects are placed

at least at a certain distance away from the camera in the augmented model. However,

we note that employing the above modification in the main model is detrimental to

learning or rendering any objects that are truly close to the camera. In practice, we find

that including both the augmentations in a single augmented ZipNeRF model works

reasonably well, and hence, we employ a single augmented model. We then use these

depth estimates as in Eq. (4.9).
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4.3.4 Overall Loss

Let Lm denote the combination of the losses employed by the corresponding radiance

fields. For example, while the NeRF employs only the photometric loss Lph, TensoRF

employs a total variation regularization in addition to Lph. We refer the readers to the

corresponding papers for the details of all the losses imposed. We impose all such losses

on the augmented models as well and denote them by La. In addition, we also include

the sparse depth loss on both the main and augmented models as,

Lsd = ∥zm − ẑ∥2 + ∥za − ẑ∥2, (4.18)

where zm and za are the depths obtained from the main and augmented models re-

spectively, and ẑ is the sparse depth given by the SfM model [46]. Our final loss is a

combination of all the losses as,

L = λmLm + λaLa + λsdLsd + λaugLaug+ (4.19)

λcfcLcfc + λmcLmc,

where Lcfc and Lmc are respectively imposed for the main NeRF and augmented TensoRF

models only, and λm, λa, λsd, λaug, λcfc and λmc are hyper-parameters.

4.4 Experimental Setup

4.4.1 Datasets

We evaluate the performance of our models on four popular datasets, namely NeRF-

LLFF [122], RealEstate-10K [216], MipNeRF360 [17] and NeRF-Synthetic [123]. We

assume the camera parameters are known for the input images, since in applications

such as robotics or extended reality, external sensors or a pre-calibrated set of cameras

may provide the camera poses.
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Table 4.1: Train and test frame numbers of RealEstate-10K dataset used in the three

different settings.

No. of i/p frames Train frame nos. Test frame nos.

2 10, 20 5–9, 11–19, 21–25

3 10, 20, 30 5–9, 11–19, 21–29, 31–35

4 0, 10, 20, 30 1–9, 11–19, 21–29, 31–35

NeRF-LLFF dataset contains eight real-world forward-facing scenes typically con-

sisting of an object at the centre against a complex background. Each scene contains

a varying number of images ranging from 20 to 60, each with a spatial resolution of

1008 × 756. Following prior work [128], we use every 8th view as the test view and

uniformly sample 2, 3 or 4 input views from the remaining.

RealEstate-10K dataset contains a large number of real-world forward-facing scenes,

from which we select 5 test scenes for our experiments. We include both indoor and

unbounded outdoor scenes and select 50 temporally continuous frames from each scene.

The frames have a spatial resolution of 1024×576. Following prior work [159], we reserve

every 10th frame for training and choose 2, 3 or 4 input views among them. In the

remaining 45 frames, we use those frames that are not very far from the input frames for

testing. Specifically, we choose all the frames between the training views that correspond

to interpolation and five frames on either side that correspond to extrapolation. Tab. 4.1

shows the train and test frame numbers we use for the three different settings.

MipNeRF360 dataset contains seven publicly available unbounded 360◦ real-world

scenes including both indoor and outdoor scenes. Each scene contains 100 to 300 images.

The four indoor scenes have a spatial resolution of approximately 1560× 1040, and the

three outdoor scenes have an approximate spatial resolution of 1250 × 830. Following

prior work [18], we reserve every 8th view for testing and uniformly sample 12, 20 and 36

input views from the remaining. We use more input views on this dataset as compared

to the other datasets owing to the significantly larger fields of view.
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NeRF-Synthetic dataset contains eight bounded 360◦ synthetic scenes, each contain-

ing 100 train images and 200 test images. All the scenes have a spatial resolution of

800× 800. For training, we uniformly sample 4, 8 and 12 input views from the training

set and test on all 200 test images.

4.4.2 Evaluation measures

We quantitatively evaluate the predicted frames from various models using the peak

signal-to-noise ratio (PSNR), structural similarity (SSIM) [190] and LPIPS [215] mea-

sures. For LPIPS, we use the v0.1 release with the AlexNet [86] backbone, as suggested

by the authors. We also employ depth mean absolute error (MAE) to evaluate the mod-

els on their ability to predict absolute depth in novel views. In addition, we also evaluate

the models with regard to their ability to predict better relative depth using the spear-

man rank order correlation coefficient (SROCC). Obtaining better relative depth might

be more crucial in downstream applications such as 3D scene editing. Since the ground

truth depth is not provided in the datasets, we train NeRF and ZipNeRF models with

dense input views on forward-facing and 360◦ datasets respectively and use their depth

predictions as pseudo ground truth. On the NeRF-LLFF and MipNeRF360 datasets,

we normalize the predicted depths by the median ground truth depth, since the scenes

have different depth ranges. With very few input views on forward-facing datasets, the

test views could contain regions that are not visible in the input views, and hence, we

also evaluate both the view synthesis and depth performance in visible regions only. To

determine such regions, we use the depth estimated by a NeRF trained with dense input

views and compute the visible region mask through reprojection error in depth. On the

other hand, the input views cover most of the scene in the 360◦ datasets, and hence

we evaluate the performance on full frames. We do not evaluate the rendered depth on

the NeRF-Synthetic dataset since the depth estimated with the dense input ZipNeRF

is unreliable, especially in the white background regions, and the ground truth depth is

not provided in the dataset either.
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Table 4.2: Quantitative results of NeRF based models on the NeRF-LLFF dataset.

2 views 3 views 4 views

Model LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑

InfoNeRF 0.6024 0.2219 9.16 0.6732 0.1953 8.37 0.6985 0.2270 9.18

DietNeRF 0.5465 0.3283 11.94 0.6120 0.3405 11.76 0.6506 0.3496 11.86

RegNeRF 0.3056 0.5712 18.52 0.2908 0.6334 20.22 0.2794 0.6645 21.32

FreeNeRF 0.2638 0.6322 19.52 0.2754 0.6583 20.93 0.2848 0.6764 21.91

DS-NeRF 0.3106 0.5862 18.24 0.3031 0.6321 20.20 0.2979 0.6582 21.23

DDP-NeRF 0.2851 0.6218 18.73 0.3250 0.6152 18.73 0.3042 0.6558 20.17

ViP-NeRF 0.2768 0.6225 18.61 0.2798 0.6548 20.54 0.2854 0.6675 20.75

Simple-NeRF 0.2688 0.6501 19.57 0.2559 0.6940 21.37 0.2633 0.7016 21.99

Table 4.3: Quantitative results of NeRF based models on the RealEstate-10K dataset.

2 views 3 views 4 views

Model LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑

InfoNeRF 0.5924 0.4342 12.27 0.6561 0.3792 10.57 0.6651 0.3843 10.62

DietNeRF 0.4381 0.6534 18.06 0.4636 0.6456 18.01 0.4853 0.6503 18.01

RegNeRF 0.4129 0.5916 17.14 0.4171 0.6132 17.86 0.4316 0.6257 18.34

FreeNeRF 0.5036 0.5354 14.70 0.4635 0.5708 15.26 0.5226 0.6027 16.31

DS-NeRF 0.2709 0.7983 26.26 0.2893 0.8004 26.50 0.3103 0.7999 26.65

DDP-NeRF 0.1290 0.8640 27.79 0.1518 0.8587 26.67 0.1563 0.8617 27.07

ViP-NeRF 0.0687 0.8889 32.32 0.0758 0.8967 31.93 0.0892 0.8968 31.95

Simple-NeRF 0.0635 0.8942 33.10 0.0726 0.8984 33.21 0.0847 0.8987 32.88

4.5 Experimental Results

We present the main results of our work with Simple-NeRF in Sec. 4.5.1 and then show

the extension of our ideas to explicit models in Secs. 4.5.2 and 4.5.3.
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Table 4.4: Evaluation of depth estimated by different NeRF based models with two input

views. The reference depth is obtained using NeRF with dense input views. The depth

MAE on the two datasets is of different orders on account of different depth ranges.

NeRF-LLFF RealEstate-10K

model MAE ↓ SROCC ↑ MAE ↓ SROCC ↑

DS-NeRF 0.2074 0.7230 0.7164 0.6660

DDP-NeRF 0.2048 0.7480 0.4831 0.7921

ViP-NeRF 0.1999 0.7344 0.3856 0.8446

Simple-NeRF 0.1420 0.8480 0.3269 0.9215

Figure 4.9: Qualitative examples of NeRF based models on the RealEstate-

10K dataset with two input views. While DDP-NeRF predictions contain blurred

regions, ViP-NeRF predictions are color-saturated in certain regions of the door. Simple-

NeRF does not suffer from these distortions and synthesizes a clean frame. For reference,

we also show the input images.



68 Chapter 4. Simple-RF

Figure 4.10: Qualitative examples of NeRF based models on RealEstate-10K

dataset with three input views. Simple-NeRF predictions are closest to the ground truth

among all the models. In particular, DDP-NeRF predictions have a different shade of

color and ViP-NeRF suffers from shape-radiance ambiguity, creating ghosting artifacts.

Figure 4.11: Qualitative examples of NeRF based models on the RealEstate-

10K dataset with four input views. We find that Simple-NeRF and ViP-NeRF

perform the best among all the models. However, ViP-NeRF predictions contain minor

distortions, as pointed out by the magenta arrow, which is rectified by Simple-NeRF.
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Figure 4.12: Qualitative examples of NeRF based models on the NeRF-LLFF

dataset with two input views. DDP-NeRF and ViP-NeRF synthesize frames with

broken objects in the second row, and FreeNeRF breaks the object in the first row due

to incorrect depth estimations. Simple-NeRF produces sharper frames devoid of such

artifacts.

Figure 4.13: Qualitative examples of NeRF based models on the NeRF-LLFF

dataset with three input views. In the first row, the orchid is displaced out of the

cropped box in the FreeNeRF prediction, due to incorrect depth estimation. ViP-NeRF

and RegNeRF fail to predict the complete orchid accurately and contain distortions at

either end. In the second row, ViP-NeRF prediction contains severe distortions. Simple-

NeRF reconstructs the best among all the models in both examples.
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Figure 4.14: Qualitative examples of NeRF based models on the NeRF-LLFF

dataset with four input views. In the first row, we find that ViP-NeRF, FreeNeRF,

and DDP-NeRF struggle to reconstruct the shape of the leaf accurately. In the second

row, DS-NeRF introduces floaters. Simple-NeRF does not suffer from such artifacts and

reconstructs the shapes better.

Figure 4.15: Qualitative examples of Simple-NeRF on the NeRF-LLFF dataset

with two, three, and four input views. We observe errors in depth estimation with

two input views, causing a change in the position of the roof. While this is corrected

with three input views, there are a few shape distortions in the metal rods. With four

input views, even such distortions are corrected.
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Figure 4.16: Estimated depth maps of NeRF based models on RealEstate-10K and

NeRF-LLFF datasets with two input views. In both examples, the two rows show the

predicted images and the depths respectively. We find that Simple-NeRF is significantly

better at estimating the scene depth. Also, DDP-NeRF synthesizes the left table edge

at a different angle due to incorrect depth estimation.
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4.5.1 Simple-NeRF

4.5.1.1 Comparisons

We evaluate the performance of our Simple-NeRF on the two forward-facing datasets

only since the NeRF does not natively support unbounded 360 scenes. We evaluate the

performance of our model against various sparse input NeRF models. We compare with

DS-NeRF [46], DDP-NeRF [142] and RegNeRF [128] which regularize the depth esti-

mated by the NeRF. We also evaluate DietNeRF [75] and InfoNeRF [83] that regularize

the NeRF in hallucinated viewpoints. We also include two recent models, FreeNeRF [205]

and ViP-NeRF [159], among the comparisons. We train the models on both datasets

using the codes provided by the respective authors.

4.5.1.2 Implementation details

We develop our code in PyTorch and on top of DS-NeRF [46]. We employ the Adam

Optimizer with an initial learning rate of 5e-4 and exponentially decay it to 5e-6. We

adjust the weights for the different losses such that their magnitudes after scaling are of

similar orders. For the first 10k iterations of the training, we only impose Lm,La and Lsd.

Laug and Lcfc are imposed after 10k iterations. We set the hyper-parameters as follows:

lp = 10, lv = 4, lsp = 3, k = 5, eτ = 0.1, λm = λa = 1, λsd = λaug = λcfc = 0.1 and

λmc = 0. The network architecture is exactly the same as DS-NeRF. For the augmented

models, we only change the input dimension of the MLPs N1 and N2 appropriately. The

augmented models are employed only during training, and the network is exactly the

same as Vanilla NeRF for inference. We train the models on a single NVIDIA RTX 2080

Ti GPU for 100k iterations.

4.5.1.3 Quantitative and Qualitative Results

Tabs. 4.2 and 4.3 show the view-synthesis performance of Simple-NeRF and other prior

art on NeRF-LLFF and RealEstate-10K datasets respectively. We find that Simple-

NeRF achieves state-of-the-art performance on both datasets in most cases. The higher
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performance of all the models on the RealEstate-10K dataset is perhaps due to the

scenes being simpler. Hence, the performance improvement is also smaller as compared

to the NeRF-LLFF dataset. Fig. 4.9 shows predictions of various models on an example

scene from the RealEstate-10K dataset, where we observe that Simple-NeRF is the best

in reconstructing the novel view. Figs. 4.10 to 4.15 show more comparisons on both

datasets with 2, 3, and 4 input views. Further, Simple-NeRF improves significantly in

estimating the depth of the scene as seen in Tab. 4.4 and Fig. 4.16. We provide video

comparisons on our project webpage1.

We note that the quantitative results in Tabs. 4.2 and 4.3 differ from the values

reported in Chapter 3(ViP-NeRF) on account of the following two differences. Firstly,

the quality evaluation metrics are computed on full frames in ViP-NeRF. However, we

exclude the regions not seen in the input views as explained in Sec. 4.4.2. Secondly,

while we use the same train set as that of ViP-NeRF on the RealEstate-10K dataset, we

modify the test set as shown in Tab. 4.1. We change the test set since the test views

that are very far away from the train views may contain large unobserved regions.

4.5.1.4 Ablations

We test the importance of each of the components of our model by disabling them one

at a time. We disable the smoothing and Lambertian augmentations and coarse-fine

consistency loss individually. When disabling Lcfc, we additionally add augmentations

to the fine NeRF since the knowledge learned by coarse NeRF may not efficiently prop-

agate to the fine NeRF. We also analyze the need to supervise with only the reliable

depth estimates by disabling the mask and stop-gradients in Laug and Lcfc. In addition,

we also analyze the effect of including residual positional encodings γ(pi, l
s
p, lp) while pre-

dicting the color in the smoothing augmentation model. Tab. 4.5 shows a quantitative

comparison between the ablated models. We observe that each of the components is

crucial, and disabling any of them leads to a drop in performance. Further, using all the

1https://nagabhushansn95.github.io/publications/2024/Simple-RF.html
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(a) Without smoothing augmentation: The ablated model introduces floaters that are signifi-

cantly reduced by using the smoothing augmentation model.

(b) Without Lambertian augmentation: The ablated model suffers from shape-radiance ambi-

guity and produces ghosting artifacts.

(c) Without reliability of depth supervision: The smoothing augmentation model struggles to

learn sharp depth discontinuities at true depth edges. Supervising the main model using such

depths without determining their reliability causes the main model to learn incorrect depth.

As a result, the ablated model fails to learn sharp depth discontinuities at certain regions.

(d) Without coarse-fine consistency: We observe that while Simple-NeRF predictions are

sharper, the ablated model without coarse-fine consistency loss, Lcfc produces blurred ren-

ders. This is similar to Fig. 4.6a, where we observe DS-NeRF also produce blurred renders.

Figure 4.17: Qualitative examples for Simple-NeRF ablated models on the

NeRF-LLFF dataset with two input views.
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Table 4.5: SimpleNeRF ablation experiments on RealEstate-10K and NeRF-LLFF

datasets with two input views.

RealEstate-10K NeRF-LLFF

model LPIPS ↓ MAE ↓ LPIPS ↓ MAE ↓

Simple-NeRF 0.0635 0.33 0.2688 0.14

w/o smoothing augmentation 0.0752 0.38 0.2832 0.15

w/o Lambertian augmentation 0.0790 0.39 0.2834 0.15

w/o coarse-fine consistency 0.0740 0.42 0.3002 0.19

w/o reliable depth 0.0687 0.45 0.3020 0.22

w/o residual pos enc 0.0790 0.40 0.2837 0.16

w/ identical augmentations 0.0777 0.40 0.2849 0.15

w/ smaller n/w as smoothing aug 0.0740 0.38 0.2849 0.15

depths for supervision instead of only the reliable depths leads to a significant drop in

performance. Finally, disabling Lcfc also leads to a drop in performance in addition to

increasing the training time by almost 2× due to the inclusion of augmentations for the

fine NeRF.

Since we design our regularizations on top of DS-NeRF [46] baseline, our framework

can be seen as a semi-supervised learning model by considering the sparse depth from a

Structure from Motion (SfM) module as providing limited depth labels and the remaining

pixels as the unlabeled data. Our approach of using augmented models in tandem with

the main radiance field model is perhaps closest to the Dual-Student architecture [80]

that trains another identical model in tandem with the main model and imposes consis-

tency regularization between the predictions of the two models. However, our augmented

models have complementary abilities as compared to the main radiance field model. We

now analyze if there is a need to design augmentations that learn “simpler” solutions

by replacing our novel augmentations with identical replicas of the NeRF as augmen-

tations. The seventh row of Tab. 4.5 shows a performance drop when using identical

augmentations.
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Finally, we analyze the need for an augmentation that explicitly achieves depth

smoothing. In other words, we ask if naively reducing the model capacity in the aug-

mented model achieves a similar effect to that of our smoothing augmentation. We

test this by replacing the smoothing augmentation with an augmented model that has

a smaller MLP N1. Specifically, we reduce the number of layers from eight to four in

the augmented model. From the results in the last row of Tab. 4.5, we conclude that

reducing the positional encoding degree is more effective, perhaps because the MLP with

fewer layers may still be capable of learning floaters on account of using all the positional

encoding frequencies.

4.5.1.5 Visualization of Depth Reliability Masks

In Fig. 4.18, we present visualizations that motivate the design of our augmentations

in Simple-NeRF, namely the smoothing and Lambertian augmentations. We train our

model without augmentations and the individual augmentations separately with only

Lph and Lsd for 100k iterations. Using the depth maps predicted by the models for an

input training view, we determine the mask that indicates which depth estimates are

more accurate, as explained in Sec. 4.3.1.4. For two scenes from the LLFF dataset, we

show an input training view and focus on a small region to visualize the corresponding

masks.

We observe that the smoothing augmentation is determined to have estimated better

depths in smooth regions. At edges, the depth estimated by the main model is more

accurate. Similarly, the Lambertian augmentation estimates better depth in Lambertian

regions, while the main model estimates better depth in specular regions. We note that

the masks shown are not the masks obtained by our final model. Since the masks are

computed at every iteration, and the training of the main and augmented models are

coupled, it is not possible to determine the exact locations where the augmented models

help the main model learn better.
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(a) Smoothing augmentation: The green

and blue boxes focus on the two horns, where

we observe that the augmented model depth

is preferred in the depth-wise smooth regions

on horns, and the main model depth is pre-

ferred at the edges. The magenta box focuses

on a completely smooth region, so the aug-

mented model depth is preferred for most pix-

els. In the red box, augmented model depth is

preferred along the horizontal bar. The main

model depth is preferred on either side of the

bar that contains multiple depth discontinu-

ities.

(b) Lambertian augmentation: The green

and magenta boxes focus on the TV and the

table, respectively, which are highly specular

in this scene (please view the supplementary

videos of the room scene to observe the spec-

ularity of these objects). In these regions, the

main model depth is determined to be more

accurate since the main model can handle

specular regions. The red and blue boxes fo-

cus on Lambertian regions of the scene where

the depth estimated by the augmented model

is preferred.

Figure 4.18: Visualizations of depth reliability mask for the two augmentations of Simple-

NeRF. White pixels in the mask indicate that the main model depth is determined to be

more accurate at the corresponding locations. Black pixels indicate that the augmented

model depth is determined to be more accurate.
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Table 4.6: Quantitative results of TensoRF based models with three input views.

NeRF-LLFF RealEstate-10K

Model LPIPS ↓ SSIM ↑ PSNR ↑
Depth

MAE ↓

Depth

SROCC ↑
LPIPS ↓ SSIM ↑ PSNR ↑

Depth

MAE ↓

Depth

SROCC ↑

TensoRF 0.5474 0.3163 12.29 0.67 0.03 0.0986 0.8532 29.62 0.44 0.63

DS-TensoRF 0.2897 0.6291 18.58 0.23 0.73 0.0739 0.8872 32.50 0.27 0.75

Simple-TensoRF 0.2461 0.6749 20.22 0.17 0.83 0.0706 0.8920 32.70 0.22 0.80

Rs
σ = Rσ 0.2536 0.6677 19.85 0.18 0.81 0.085 0.8821 30.94 0.27 0.77

N s
vox = Nvox 0.2568 0.6579 19.95 0.19 0.79 0.0735 0.8896 32.22 0.22 0.82

Rs
σ = Rσ;N

s
vox = Nvox 0.2728 0.6424 19.50 0.22 0.74 0.0787 0.8871 31.73 0.23 0.79

4.5.2 Simple-TensoRF

4.5.2.1 Implementation Details

Building on the original TensoRF code base, we employ Adam Optimizer with an ini-

tial learning rate of 2e − 2 and 1e − 3 for the tensor and MLP parameters respec-

tively, which decay to 2e − 3 and 1e − 4. We employ the same hyper-parameters

as the original implementation for the main model as follows: Rσ = 24, Rc = 72,

b = {(−1.5, 1.5), (−1.67, 1.67), (−1.0, 1.0)}, Nvox = 6403, D = 27, and lv = 0. We set

Rs
σ = 12, bsz1 = −0.5 and N s

vox = 1603, Nmc = 5, k = 5, eτ = 0.1 for the augmented

model and the remaining hyper-parameters are the same as the main model. We weigh

the losses as λm = λa = 1, λsd = λaug = 0.1, λmc = 0.01 and λcfc = 0. We train the

models on a single NVIDIA RTX 2080 Ti 11GB GPU for 25k iterations and enable Laug

after 5k iterations.

4.5.2.2 Quantitative and Qualitative Results

Tab. 4.6 shows the view-synthesis performance of Simple-TensoRF on the NeRF-LLFF

and RealEstate-10K datasets. We compare the performance of our model against the

vanilla TensoRF and a baseline we create by adding sparse depth loss on TensoRF, which

we refer to as DS-TensoRF. We find that Simple-TensoRF significantly improves perfor-

mance over TensoRF and DS-TensoRF on both datasets. Fig. 4.19 compares the three

models visually, where we observe that Simple-TensoRF mitigates multiple distortions
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(a) NeRF-LLFF dataset: In the first example, we find that the horn is broken and almost half

of the bony frill is missing in the renders of TensoRF and DS-TensoRF. In the second example,

TensoRF and DS-TensoRF extend the red stigma and break the green stem. Simple-TensoRF

does not introduce such distortions and is closest to the ground truth.

(b) RealEstate-10K dataset: In the first example, we observe a shift in the position of the door

due to incorrect depth estimation. With sparse depth supervision, DS-TensoRF moves the

door to the correct position, but only partially. Adding our augmentations provides the best

result. Similarly, we see distortions in the frames rendered by TensoRF and DS-TensoRF in

the second example, which are reduced significantly by Simple-TensoRF.

Figure 4.19: Qualitative examples of TensoRF based models with three input

views.
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Figure 4.20: Estimated depth maps of TensoRF based models on RealEstate-10K

and NeRF-LLFF datasets with three input views. In both examples, the two rows show

the predicted images and the depths respectively. In the first example, TensoRF and

DS-TensoRF incorrectly estimate the depth of the floor as shown by the orange regions.

In the second row, while TensoRF is unable to estimate the scene geometry, DS-TensoRF

is unable to mitigate all the floaters in orange color. We find that Simple-TensoRF is

significantly better at estimating the scene depth.
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Figure 4.21: Qualitative examples of Simple-TensoRF ablations on NeRF-LLFF

dataset with three input views. Reducing the tensor resolution only leads to translucent

floaters as shown by the arrows in the second column. On the other hand, only reducing

the number of tensor decomposed components leads to small opaque floaters as shown

by the arrows in the third column.

observed in the renders of TensoRF and DS-TensoRF. From Tab. 4.6 and Fig. 4.20,

we observe that Simple-TensoRF is significantly better at estimating the scene depth

than both TensoRF and DS-TensoRF. While we observe that Simple-NeRF performs

marginally better than Simple-TensoRF in most cases, Simple-TensoRF achieves a lower

depth MAE on the RealEstate-10K dataset.

We test the need for the different components of our augmentation by disabling them

one at a time and show the quantitative results in the second half of Tab. 4.6. Specifically,

we disable the reduction in the number of tensor decomposition components and the

number of voxels in the first two rows respectively. In the third row, we disable both

the components, where the augmented model consists of the reduction in the bounding

box size only. We find that disabling either or both of the components leads to a drop in

performance. In particular, Fig. 4.21 shows that reducing only the tensor resolution and

not reducing the number of tensor decomposition components leads to translucent blocky

floaters. On the other hand, reducing only the number of components causes small and

completely opaque floaters. Further, we find that reducing the number of components

Rσ is more crucial in obtaining simpler solutions on the RealEstate-10K dataset.
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Table 4.7: Quantitative results of ZipNeRF based models on the MipNeRF360 dataset.

12 input views 20 input views 36 input views

Model LPIPS ↓ SSIM ↑ PSNR ↑
Depth

MAE ↓

Depth

SROCC ↑
LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑

ZipNeRF 0.5614 0.4616 15.86 7.43 0.28 0.435 0.5911 18.89 0.3316 0.6737 21.78

Augmented ZipNeRF 0.6825 0.4462 16.27 96.42 0.49 0.619 0.5244 19.31 0.5917 0.5646 21.21

Simple-ZipNeRF 0.4876 0.5245 17.60 3.54 0.51 0.3421 0.6456 21.03 0.239 0.7458 24.19

Table 4.8: Quantitative results of ZipNeRF based models on the NeRF-Synthetic dataset.

4 input views 8 input views 12 input views

Model LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑

ZipNeRF 0.4263 0.7548 11.04 0.2877 0.7973 15.01 0.1625 0.8528 20.12

Simple-ZipNeRF 0.3878 0.7715 11.50 0.2461 0.8063 15.88 0.1532 0.8531 20.51

4.5.3 Simple-ZipNeRF

4.5.3.1 Implementation Details

We build our code in PyTorch on top of an unofficial ZipNeRF implementation2. For the

main model, we retain the hyper-parameters of the original ZipNeRF. For the augmented

model, we reduce the size of the hash table from T = 221 to T s = 211 and set snear = 0.3.

We impose Laug after 5k iterations and use k = 5, eτ = 0.2. The rest of the hyper-

parameters for the augmented model are the same as the main model. We weigh the

losses as λm = λa = 1, λaug = 10 and λsd = λcfc = λmc = 0. We do not impose the

sparse depth loss Lsd since we find that Colmap either fails in sparse reconstruction or

provides noisy sparse depth for 360◦ scenes. We train the models on a single NVIDIA

RTX 2080 Ti 11GB GPU for 25k iterations.

4.5.3.2 Quantitative and Qualitative Results

We compare the performance of ZipNeRF with and without our augmentations on the

MipNeRF360 and NeRF-Synthetic datasets in Tabs. 4.7 and 4.8 respectively. We observe

that including our augmentations improves performance significantly on both datasets

2ZipNeRF implementation: https://github.com/SuLvXiangXin/zipnerf-pytorch



4.5. Experimental Results 83

(a) 12 input views. (b) 20 input views. (c) 36 input views.

Figure 4.22: Qualitative examples of ZipNeRF and Simple-ZipNeRF on the

MipNeRF360 dataset. In the first column, we observe that ZipNeRF places large

regions of the pink mat close to the camera, occluding the bulldozer. In the second

example, we observe objects being broken or placed at incorrect positions due to incorrect

depth estimation, as well as translucent floaters in ZipNeRF predictions. Finally, in the

third column, we observe that ZipNeRF fails to reconstruct the tree stump. In all the

cases, Simple-ZipNeRF produces very good reconstructions without any floaters.
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Figure 4.23: Simple-ZipNeRF estimated depth maps on MipNeRF360 dataset with

20 input views. We observe that the depth map estimated by ZipNeRF contains floaters

and that the depth estimates for the bonsai are incorrect. However, Simple-ZipNeRF

does not suffer from such issues and the estimated depth is very close to that of ZipNeRF

with dense input views.

in terms of all the evaluation measures. This observation is further supported by the

qualitative examples in Figs. 4.22 to 4.24, where we observe a clear improvement in the

quality of the rendered novel views and depth when employing our augmentations. In

addition, Tab. 4.7 and Fig. 4.25 also shows the performance of the augmented model

on the MipNeRF360 dataset. We observe a significant reduction in distortions in the

renders of the augmented model; however, the same does not reflect in the quantitative

evaluation due to the blur introduced by the augmented model.

Further, in Fig. 4.26, we show the performance of ZipNeRF and Simple-ZipNeRF

as the number of input views increases. We observe that the performance of ZipNeRF

is too low with very few input images, where our augmentation does not help improve

the performance. As the number of input views increases, the performance of ZipNeRF

improves, and our augmentation helps improve the performance significantly. Further,

with a large number of input views, the performance of ZipNeRF saturates, and our aug-

mentation does not help improve the performance. This shows that our augmentations

are highly effective when the performance of the base model is moderately good.
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(a) 4 input views. (b) 8 input views. (c) 12 input views.

Figure 4.24: Qualitative examples of ZipNeRF and Simple-ZipNeRF on the

NeRF-Synthetic dataset. While the renders of ZipNeRF contain multiple floaters,

Simple-ZipNeRF outputs are cleaner and free from such artifacts.
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Figure 4.25: Qualitative examples to visualize the effect of our augmentation.

We observe that the ZipNeRF render contains severe distortions. The output of our

augmented model is significantly better in reconstructing the scene, but the render con-

tains severe blur on account of smoothing introduced by small hash table. Learning from

the depth provided by the augmented model, Simple-ZipNeRF is able to reconstruct the

scene better as well as retain sharpness by utilizing the larger hash table.

(a) MipNeRF360 Bicycle scene. (b) MipNeRF360 Counter scene.

Figure 4.26: Performance of ZipNeRF and Simple-ZipNeRF with increasing

number of input views. We observe that our augmentation improves performance

significantly over ZipNeRF, when the performance of the base model is moderate. When

the performance of the base model is extremely poor or extremely good, the augmen-

tation does not have a significant impact. However, our augmentation does not lead to

significant degradation in performance in either case.
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Table 4.9: Training and inference (per frame) time and memory comparison of various

models.

Training Inference

Model Time (hrs) Mem (GB) Time (sec) Mem (GB)

NeRF 14 6.1 54 0.8

Simple-NeRF 21 8.8 54 0.8

TensoRF 2.1 6.8 21 4.0

Simple-TensoRF 3.7 7.2 21 4.0

ZipNeRF 2.0 6.7 13 4.8

Simple-ZipNeRF 4.2 8.6 13 4.8

4.6 Discussion

4.6.1 Computational Complexity

We report the approximate GPU memory utilization and time taken for training and

inference of our family of Simple-RF models in Tab. 4.9. We observe that Simple-

NeRF with two augmentations takes only 1.5 times more time than NeRF for training

on account of employing augmentations on the coarse NeRF only. While coarse NeRF

queries the MLPs 64 times, the fine NeRF queries the MLPs 192 times, giving a combined

256 queries per pixel. Simple-NeRF queries the coarse MLPs 192 times and the fine MLPs

192 times, with a total of 384 queries per pixel. On the other hand, Simple-TensoRF and

Simple-ZipNeRF take twice the time as TensoRF and ZipNeRF respectively on account

of employing a single augmentation with exactly the same number of queries as the main

model. We note that it could be possible to further reduce the training time for ZipNeRF

by employing the augmentation only on the proposal MLP. However, this requires the

proposal MLPs to output color and to be trained with the photometric loss instead of

the interval loss [18]. The effect of such a change is unclear and is left for future work.

Interestingly, Simple-TensoRF requires only a little more memory than TensoRF during
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training, perhaps due to the low resolution tensor employed by the augmented model.

Further, while the NeRF models require significantly less memory during inference, grid

based models such as TensoRF and ZipNeRF require more memory due to the use of a

voxel grid in place of MLPs. Finally, we note that at inference time, Simple-RF models

take exactly the same time and memory as the baseline models since the augmentations

are disabled during inference. All the above experiments are conducted on a single

NVIDIA RTX 2080 Ti 11GB GPU.

4.7 Summary

We address the problem of few-shot radiance fields by obtaining depth supervision from

simpler solutions learned by lower capability augmented models that are trained in tan-

dem with the main radiance field model. We show that augmentations can be designed

for both implicit models, such as NeRF, and explicit radiance fields, such as TensoRF

and ZipNeRF. Since the shortcomings of various radiance fields are different, we de-

sign the augmentations appropriately for each model. We show that our augmentations

improve performance significantly on all three models, and we achieve state-of-the-art

performance on forward-facing scenes as well as 360◦ scenes. Notably, our models achieve

a significant improvement in the depth estimation of the scene, which indicates a superior

geometry estimation.



Chapter 5

Factorized Motion Fields for Fast

Sparse Input Dynamic View

Synthesis

5.1 Introduction

Although Neural Radiance Fields (NeRF) [123] brought in a seminal shift in novel view

synthesis by incorporating differential volume rendering with a compact continuous-

depth model, it has several limitations such as the inability to handle object motion in the

scene as well as long training and rendering times. Recently, K-Planes [53] significantly

reduced the time complexity for dynamic view synthesis by proposing a factorized 4D

volume representation. However, K-Planes requires a large number of input viewpoints

to render photo-realistic novel views when employing a multi-view camera setup. In

this chapter, we overcome this limitation and design a fast dynamic radiance field that

can effectively learn the dynamic scene with few input viewpoints. We mainly focus

on a sparse multi view camera setting, where a video from each viewpoint is available.

Tab. 5.1 shows how our model relates to other models in the literature.

This chapter is based on the work accepted at SIGGRAPH 2024 [155].

89
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Optimizing a dynamic radiance field with few input viewpoints is highly under-

constrained. A popular approach to regularize an under-constrained system is to impose

additional priors during the optimization. In this chapter, we explore the use of motion

priors to regularize the dynamic radiance field. However, K-Planes employs a 4D volu-

metric representation without a motion model, it does not allow the motion implicitly

learned by the model to be regularized using motion priors. Thus, there is a need to

design a dynamic radiance field with an explicit motion field that lends itself to be con-

strained with motion supervision. Further, we desire the radiance field to be compact

and allow faster optimization and rendering.

Fast optimization of radiance fields allows wider usage in real-world applications.

Voxel grid based approaches trade memory for speed by replacing the MLP in NeRF

with a voxel grid [54, 165]. Prior work on fast and compact representation for learning

radiance fields can be broadly classified into two categories. One category of models

employs a factorized volume representation [28, 33, 53] to exploit the spatial correlation

of the entities to be learned, such as volume density and color. The other category

of models [18, 81, 125] mainly exploit the sparsity of the scene to reduce the memory

footprint. However, the scene flow for a moving object is non-zero at every time instant,

but its variation is temporally correlated. Since the motion field is not sparse temporally,

we believe that the sparsification based approaches may tend to learn an independent

motion field for every time instant. For example, with a 4DGS model, a single 4D

Gaussian may not be able to model the motion across a few time instants and can model

the motion at a single time instant only, similar to Lee et al. [92]. On the other hand,

factorized volumes can effectively exploit the spatio-temporal correlation of the motion

field and hence we employ a 4D factorized model to learn the motion field. We then

supervise the motion learned by the motion model using reliable sparse flow priors.
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Table 5.1: Related work overview: We compare our work with prior works based

on various aspects. Sparse input views refers to models that can handle data from few

stationary multi-view cameras. Explicit refers to models that primarily employ explicit

models followed by an optional tiny MLP.
† TiNeuVox and SWAGS use an explicit model to represent the scene, but use implicit

neural networks to model the motion. ∗ NSFF predicts motion as an auxiliary task.

Dynamic

Scenes

Sparse

Views

Explicit

Model

Motion

Model

NeRF 7 7 7 –

TensoRF, i-ngp, 3DGS 7 7 3 –

DS-NeRF, SimpleNeRF 7 3 7 –

NSFF∗, DyNeRF 3 7 7 7

D-NeRF 3 7 7 3

TiNeuVox, SWAGS 3 7 7† 3

K-Planes, HexPlane 3 7 3 7

Ours 3 3 3 3
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Figure 5.1: Model architecture: We decompose the dynamic radiance field into a 4D

scene flow or deformation field Ff that maps a 3D point pi at time t to the corresponding

3D point p′
i at canonical time t′, and a 5D radiance field Fs that models the scene at

canonical time t′. Both the fields are modeled using a factorized volume followed by a

tiny MLP, which allows fast optimization and rendering. We note that Gf is modeled

using six planes, although we show only three owing to the difficulty in visualizing four

dimensions. The MLP Ms is conditioned on time and viewing direction to model time-

dependent color variations such as shadows and view-dependent color variations such as

specularities. The output of Fs is volume rendered to obtain the color of the pixel and

the photometric loss is used to train both the fields. The explicitly modeled motion field

Ff is additionally regularized using the flow priors as shown in Fig. 5.3.
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5.2 Method

Given a set of posed video frames Ivt , where t = {1, 2, . . . , Nf} denotes the time instant or

the frame index among Nf frames per camera and v = {1, 2, . . . Nc} denotes the camera

index among Nc stationary cameras, the goal is to synthesize the dynamic scene at a

specified time instant t = {1, 2, . . . , Nf} and in any novel view. We focus on the sparse

multi-view setting, where the number of cameras Nc is small. The main challenges here

include the design of an explicit motion model that allows regularization with motion

priors and the choice of reliable motion priors itself when training with few input views.

We first describe the design of our dynamic radiance field (Sec. 5.2.1), and then discuss

its training with reliable flow priors (Sec. 5.2.2).

5.2.1 Dynamic Radiance Field

We modify the K-Planes [53] implementation for dynamic radiance fields to incorporate

an explicit motion model. K-Planes employs a multi-resolution grid G followed by a tiny

multi-layer perceptron (MLP) M to represent a radiance field. As shown in Fig. 5.1,

we model our dynamic radiance field by employing two factorized tensorial models, a

radiance field Fs = Gs ◦ Ms that represents the 3D scene at a canonical time instant t′,

and a 4D scene flow or deformation field Ff = Gf ◦Mf that represents the scene flow for

a 3D point p from time t to t′. Mapping the 3D scene at every time instant to a canonical

volume helps our model enforce temporal consistency of objects in the scene [138].

Here, Gf consists of six planes {Sxy, Syz, Sxz, Sxt, Syt, Szt} at every resolution, where

the first three planes model the spatial correlation and the next three model the spatio-

temporal correlation of the motion field. To obtain the scene flow for a 3D point p

from time t to t′, we first project the 4D point (p, t) onto the six planes and bilinearly

interpolate the feature vectors in each of the six planes. We then combine the features

using the Hadamard product to obtain the final feature vector hi as

hi = Gf (p) =
∏

c∈{xy,yz,xz,xt,yt,zt}

Sc (p) , (5.1)
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which is then fed to the tiny MLP Mf that outputs the scene flow. Modeling the scene

flow field Ff using the hex-plane representation and the tiny MLP makes our motion

model fast and compact. For more details on the hex-plane representation, we refer the

readers to K-Planes [53]. We model the scene grid Gs using a similar factorization with

three spatial planes. While it is beneficial to model the motion field using a factorized

volume, the canonical scene can be learned using any explicit representation such as

3DGS [81]. We employ factorized volumes to model both scene and motion using a

unified framework.

We train our model, similar to K-Planes, by rendering randomly sampled pixels qv
t in

view v at time t and using the ground truth color as supervision. To render a pixel qv
t ,

we sample Np points {pi}Np

i=1 at depths {zi}Np

i=1 along the corresponding ray. For every 3D

point pi, we first obtain the corresponding 3D point p′
i at canonical time t′ by computing

the scene flow from time t to t′ using Ff as

p′
i = Ff (pi, t) + pi. (5.2)

We then query Gs at p′
i to obtain the volume density σi and a latent feature h′

i corre-

sponding to pi as

σi, h′
i = Gs (p′

i) . (5.3)

A tiny MLP Ms maps h′
i, encoded viewing direction v and encoded time t to the color

ci of pi as

ci = Ms (h′
i, γ (v) , γ (t)) , (5.4)

where γ denotes the encoding [125] of the viewing direction and the time instant. Con-

ditioning Ms additionally on time allows our model to capture illumination changes due
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to object motion. ci are then volume rendered to obtain the color c of q as

wi =
(
Πi−1

j=1 exp (−δjσj)
)
(1− exp (−δiσi)) , (5.5)

c =

Np∑
i=1

wici, z =

Np∑
i=1

wizi, (5.6)

where δi = zi−zi−1 and z gives the expected depth of qv
t . Both Ff and Fs are optimized

through the photometric loss, Lph = ∥c − ĉ∥2, where ĉ is the ground truth color. De-

composing the scene into a canonical scene field and a flow field allows us to regularize

the flow field using flow priors when only a sparse set of viewpoints are available.

5.2.2 Training with Flow Priors

A popular choice for motion priors is the dense optical flow estimated using deep optical

flow networks [170]. However, we find that the dense optical flow estimates are unreliable

due to generalization issues as seen in Fig. 5.2a. On the other hand, matching keypoints

using robust SIFT [111] descriptors are more reliable across cameras as seen in Fig. 5.2b.

Specifically, for a pair of frames across time instants t and s and cameras v and u,

we extract the SIFT keypoints in individual images using Colmap [145] and match the

keypoints using SIFT descriptors. The difference between the locations of the matched

keypoints gives the sparse flow prior Psf. While Colmap provides a reasonable number

of matches, newer models such as R2D2 [141] could be employed to improve the richness

of the sparse flow prior.

Employing flow priors from any time t to canonical time t′ for large t− t′ may be less

efficient since large regions of the scene may not be visible. Thus, it is desirable to utilize

flow priors across a short duration of time. However, the motion model Ff provides the

scene flow from t to t′ only and not the flow between any two arbitrary time instants.

We resolve this by using the flow prior to encourage Ff to map a pair of matched points

at different time instants to the same object location in 3D. Specifically, we obtain the

matching pixels using the flow priors and constrain the 3D points corresponding to the
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(a) Dense flow across cameras estimated by RAFT.

(b) Sparse flow across cameras estimated by SIFT.

Figure 5.2: Visualization of different flow priors: We show the matched pixels as

provided by different flow priors. The pixels in the first view are randomly picked from

those for which sparse flow is available and the same pixels are used for dense flow. Note

that the second view in the first two examples has more blur as compared to the first

view. (a) We show that the dense flow priors across cameras obtained using deep optical

flow networks such as RAFT [169] are prone to erroneous matches, due to variations

in camera parameters and lighting. We observed similar trends with other deep optical

flow networks as well such as AR-Flow [105]. (b) Matching pixels across cameras using

robust SIFT features provides reliable matches, albeit sparse.
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Figure 5.3: Flow regularization: Since the motion field Ff gives only the unidirectional

flow from time t to t′, we impose the flow prior by minimizing the distance between the

3D points in the canonical volume corresponding to the matched pixels (qv
t , qu

s ) in the

input frames (Ivt , I
u
s ).

matching pixels to map to the same 3D point in the canonical scene field as shown in

Fig. 5.3.

Mathematically, let the flow corresponding to a pixel qv
t to time s and view u be

given by fv→u
t→s . Then the matching pixel at time s and view u is given by qu

s = qv
t + fv→u

t→s .

Let the 3D points sampled along the rays corresponding to qv
t and qu

s be given by pi(t, v)

and pi(s, u) respectively. Then, we impose the sparse flow constraint as

Lsf =

∥∥∥∥∥
Np−1∑
i=0

wi(t, v)p′
i(t, v)−

Np−1∑
i=0

wi(s, u)p′
i(s, u)

∥∥∥∥∥
2

, (5.7)

where p′(t, v) and p′(s, u) are computed from p(t, v) and p(s, u) using Ff as in Eq. (5.2),

and wi(t, v) and wi(s, u) are computed using Eq. (5.5). The two terms in Eq. (5.7)

represent qv
t and qu

s in the canonical volume respectively. Thus, Lsf guides Fs on which

two points in two different time instants belong to the same object.

In Eq. (5.7), we first find the canonical field points p′
i using Ff and then average

the location of the 3D points using weights wi and not the other way for the following

reason. The former approach regularizes the motion model Ff for every pi giving a rich

supervision to Fs, whereas the latter approach regularizes Ff only for the expected 3D

point p =
∑

wipi. Further, since we do not impose stop-gradient on wi in Lsf, the flow
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priors also help remove incorrect masses such as floaters.

5.2.3 Overall Model

We train our model by minimizing the combination of photometric loss Lph and sparse

flow loss Lsf as

L = Lph + λsfLsf, (5.8)

where λsf is a hyper-parameter.

5.3 Experiments

5.3.1 Evaluation Setup

Datasets: We evaluate our model on two popular multi-view dynamic scene datasets,

namely N3DV [98] and InterDigital [143] with three input views. Following prior work [53],

we downsample the videos spatially by a factor of two for all the experiments. We use the

video at the center of the camera rig for testing and uniformly sample train videos from

the remaining videos. N3DV dataset contains six real-world scenes with 17–21 static

cameras per scene and 300 frames per viewpoint. The videos have a spatial resolution of

1352× 1014 and a frame rate of 30fps. InterDigital dataset contains multiple real-world

scenes with 16 static cameras and varying number of frames per scene. We undistort

the video frames using the radial distortion parameters provided with the dataset and

use the undistorted videos for our experiments. We select five scenes that contain at

least 300 frames and choose the first 300 frames. The videos have a spatial resolution of

1024× 544 and a frame rate of 30fps spanning 10 seconds in all our experiments.

Evaluation measures: We evaluate the rendered frames of all the methods using

PSNR, SSIM [191] and LPIPS [215]. We also evaluate the models on their ability to

reconstruct the 3D scene by computing MAE on the rendered depth maps. Due to
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Table 5.2: Quantitative results: We compare our model with K-Planes on N3DV [98]

and InterDigital [143] datasets with three input views. We also show the performance of

our base DeRF model for reference. We report the PSNR, SSIM, and LPIPS scores for

the rendered images and the depth MAE for the rendered depth maps. The best scores

in each category are shown in bold.

N3DV InterDigital

Model PSNR ↑ SSIM ↑ LPIPS ↓ Depth MAE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Depth MAE ↓

HexPlane 15.53 0.49 0.50 1.97 13.85 0.27 0.54 1.43

K-Planes 23.65 0.83 0.25 0.34 18.75 0.66 0.30 0.22

DeRF 22.61 0.81 0.27 0.39 18.72 0.68 0.30 0.22

SF-DeRF 24.79 0.87 0.22 0.20 20.06 0.73 0.26 0.13

the unavailability of true depth maps on both datasets, we use the depth provided by

K-Planes trained with dense input views as pseudo ground truth depth.

5.3.2 Comparisons and Implementation Details

We mainly compare the performance of our model against K-Planes and HexPlane. We

use the official code released by the authors of K-Planes and modify it to implement

our model. We refer to our base model without any priors as DeRF model. To test

the superiority of our sparse flow prior, we also compare our model against DeRF with

dense flow priors. Since we use two factorized models instead of one used in K-Planes,

we reduce the feature dimension in both of our models by half to keep the total number

of parameters comparable to K-Planes. We train all the models for 30k iterations on a

single NVIDIA RTX 2080 GPU. We randomly pick s ∈ {t − 10, t + 10} to impose the

flow prior losses and set λsf = 1. We use the same values as suggested by K-Planes for

all the remaining hyperparameters.
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Figure 5.4: Qualitative examples on N3DV dataset with three input views: We

can observe that K-Planes finds it hard to learn the moving person leading to significant

distortions. Our DeRF model (without any priors) corrects a few errors by virtue of the

common canonical volume. Imposing our priors leads to much better reconstruction.

Figure 5.5: Qualitative examples on N3DV dataset with three input views: We

observe that K-Planes blurs moving objects such as the face of the dog and the hairs on

the face of the person in the first two examples respectively. We also find that K-Planes

creates distortions in the static regions when an object moves in its vicinity as seen in the

third row. However, our SF-DeRF model produces sharper and more accurate results.
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Figure 5.6: Qualitative examples on InterDigital dataset: In the first row, K-

Planes creates a duplication of the tower, while the tower is significantly distorted in the

second row. Our model correctly reconstructs both the towers.

Figure 5.7: Visualization of rendered depth on N3DV dataset: Observe the

difference in color of the depth map rendered by K-Planes which shows the errors in the

estimated depth.
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Figure 5.8: Visualization of rendered depth on InterDigital dataset: While our

model learns better depth in the scene leading to better reconstruction of the tower,

K-Planes is unable to learn the geometry correctly causing distortions in the tower.

5.3.3 Results

We show the quantitative performance of our model, K-Planes and HexPlane in Tab. 5.2,

where we observe that our SF-DeRF model outperforms both K-Planes and HexPlane

across all the settings on both the datasets. We observe that the performance of all the

models is relatively higher on the N3DV dataset as compared to the InterDigital dataset.

This is perhaps due to the InterDigital dataset having larger motion and highly textured

regions. We also note that the performance of HexPlane is substantially lower than

both K-planes and our model. This could be a result of optimizing HexPlane initially

with a low-resolution grid, which causes the model to overfit the input-views and not

utilize the high-resolution grid in the later stages of training. K-Planes does not suffer

from this drawback by using a multi-resolution grid throughout the optimization. From

Figs. 5.5 and 5.6, we observe that our model is able to correct errors over K-Planes.

The improvements are more starkly visible in the supplementary videos on our project

webpage1.

We compare the rendered depth from both the models in Figs. 5.7 and 5.8 and observe

that our model is able to reconstruct the depth more accurately than K-Planes. Tab. 5.2

1https://nagabhushansn95.github.io/publications/2024/RF-DeRF.html
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Table 5.3: We test the performance of our DeRF model with dense flow priors and our

reliable sparse flow priors. The performance of the DeRF model (without any priors) is

also shown for reference.

N3DV InterDigital

Model LPIPS ↓
Depth

MAE
↓ LPIPS ↓

Depth

MAE
↓

K-Planes 0.25 0.34 0.30 0.22

DeRF w/o any priors 0.27 0.39 0.30 0.22

DeRF w/ dense flow priors 0.30 0.49 0.36 0.29

DeRF w/ our sparse flow priors 0.22 0.20 0.26 0.13

also shows that our DeRF model (without any priors) performs better than K-Planes

in the scenes with larger motion, such as the scenes in the InterDigital dataset, perhaps

due to the temporal consistency enforced by the canonical volume. This is also visible

in the example shown in Fig. 5.4. In our experiments, SF-DeRF roughly took 1.5 hours

and 5GB GPU memory to train on a single scene, and 6 seconds to render a single

frame. The size of the saved model parameters is approximately 280MB. Please refer to

Fridovich-Keil et al. [53] for the training time for various models including K-Planes and

DyNeRF.

Ablations: We analyze the significance of our sparse flow prior by disabling it in

Tab. 5.3. We observe that the sparse flow prior gives a large boost in performance when

included and a large drop in performance when excluded. The effect of sparse flow

prior is more pronounced in terms of depth MAE, which measures the accuracy of the

reconstructed 3D scene. This demonstrates the importance of reliable motion priors,

even if sparse.

Dense flow priors vs our sparse flow priors: To validate our hypothesis that

sparse flow priors are more effective than dense flow priors, we impose dense flow priors
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Figure 5.9: Qualitative examples of ablated models on N3DV dataset: Sparse

flow prior is effective in regularizing moving regions in the scene. Without sparse flow

priors, we observe that the face of the dog suffers from motion blur creating a fuzzy

white mass.

Figure 5.10: Qualitative examples to show the effect of dense flow priors: We

observe that the hand of the person in the second column is distorted, perhaps due to

incorrect priors provided by the dense flow. Further, we observe that the dense flow

priors deteriorate the performance as compared to our base DeRF model. Our priors do

not cause such distortions, while improving the overall reconstruction quality (observe

the color of the shirt).
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Table 5.4: We test the performance of our DeRF model against K-Planes with dense

input views.

N3DV InterDigital

Model PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

K-Planes 30.55 0.96 0.12 29.00 0.96 0.07

DeRF 29.95 0.95 0.12 28.14 0.95 0.09

on our base DeRF model and evaluate the performance on both datasets. From Tab. 5.3

and Fig. 5.10, we observe that imposing noisy dense flow priors leads to a large drop in

performance, whereas our priors help improve the performance significantly.

Performance with dense input views: We now test the ability of our model in

reconstructing the dynamic scene when provided with dense multi-view inputs. Since

motion priors may not be needed when dense views are available, we analyze the perfor-

mance of our base DeRF model (without any priors). From Tab. 5.4, we observe that

our DeRF model is competitive with K-Planes. Thus, one could employ our model in

both dense and sparse input scenarios by additionally employing reliable flow priors in

the latter case.

5.3.4 Limitations

Our approach of mapping the scene at every time instant to the canonical volume implies

that only the objects present in the canonical volume can be rendered. In other words,

our model may not handle objects entering or leaving the scene, which could happen

over longer durations. This could be resolved by learning multiple models, each trained

on self-contained shorter duration videos. We employ Colmap to generate sparse flow

priors in our framework, which is a time-consuming process. In our experiments, we

found that the generation of sparse flow priors takes about 45 minutes per scene. There

is a need to explore faster approaches to determine reliable sparse correspondences.
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5.4 Summary

We consider the setting of fast dynamic view synthesis when only a few videos of the scene

as observed from different static cameras are available. By exploiting the spatio-temporal

correlation of the motion field, we design an explicit motion model using factorized

representations that is compact, fast, and allows effective regularization with the flow

priors. We observe that the use of existing dense flow priors has a negative effect on the

performance, while the use of reliable sparse flow priors provides a significant boost in

performance. We demonstrate the effectiveness of our approach on two popular datasets

and show that our approach outperforms the state-of-the-art fast and compact dynamic

radiance fields by a large margin when only a few viewpoints are available.



Chapter 6

Temporal View Synthesis of

Dynamic Scenes through 3D Object

Motion Estimation with Multi-Plane

Images

6.1 Introduction

Recall that Temporal View Synthesis of Dynamic Scenes (TVS-DS) involves causal frame-

rate upsampling of graphically rendered videos as shown in Fig. 6.1 through temporal

view synthesis. Concretely, given the past frames and their camera poses along with the

camera pose of a future frame, TVS-DS aims at synthesizing the future frame. The main

difference between TVS-DS and novel view synthesis of dynamic scenes [40, 114, 193, 217]

is the object motion prediction between source and target views. For example, in the

works by Gao et al. [56], Lin et al. [101] and Yoon et al. [208], the target frame is

at the same time instant as one of the source frames. Thus, they do not address the

question of moving objects at a future time instant. Dynamic NeRF based models such as

This chapter is based on the work published at ISMAR 2022 [158].
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Figure 6.1: Frame-rate upsampling of graphically rendered dynamic videos us-

ing Temporal View Synthesis. This illustration shows upsampling by a factor of

two. The graphics renderer renders alternate frames {fn−2, fn, fn+2, . . .} and the inter-

mediate frames {fn−1, fn+1, fn+3, . . .} are predicted using temporal view synthesis. For

better visualization of motion, we show frames which are 10 time instants apart instead

of consecutive frames.

HyperNeRF [132] and NSFF [99] can interpolate object motion between the frames, but

require hours of training for every scene. On the other hand, our problem formulation

is close to that of video prediction [117, 162], but differs in the use and availability of

camera motion. The explicit use of camera motion can help TVS-DS methods perform

much better than generic video prediction. Thus, TVS-DS lies at the intersection of

video prediction and view synthesis.

In this work, we propose a novel framework for TVS-DS by first isolating the object

motion in past frames, estimate the object motion as flow in 3D using multiplane image

(MPIs) representation, and then extrapolate it to predict the future object motion. We

then incorporate the future camera motion by warping the MPI, infill the disocclusions

in the MPI representation and render the MPI to obtain the final frame.

6.2 Problem Statement

We formulate the problem of temporal view synthesis of dynamic scenes for causal frame

rate upsampling of synthetic videos. Consider the scenario of upsampling by k times,

where we predict k − 1 future frames before the next rendered frame. Given previ-

ous frames {fn, fn−k, . . . , fn−lk}, their depth maps {dn, dn−k, . . . , dn−lk}, camera poses
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(extrinsics) {Tn, Tn−k, . . . , Tn−lk}, camera intrinsics K and the camera poses of the next

frames {Tn+1, Tn+2, . . . , Tn+k−1}, we seek to predict the next frames {fn+1, fn+2, . . . , fn+k−1}.

We assume that the motion in the video is caused by both camera and object motion.

We refer to the motion due to user or camera movement as global motion and that of

objects as local motion.

Although the camera motion is available and large parts of the frame to be predicted

can be generated by warping the previous frame to the desired view, the movement of

objects creates additional challenges. An off-the-shelf application of video prediction

algorithms can be inefficient since these algorithms do not effectively use the camera

motion and the scene depth. Thus, the key challenge in predicting the next frame is

to design a framework that can predict the motion of individual objects and utilize the

available camera motion. We assume that the ground truth depth maps are available for

the rendered frames since we focus on graphical rendering applications in this work. We

also assume that illumination changes are minimal due to the high frame rates of the

videos.

6.3 Method

6.3.1 Multi-Plane Images (MPI)

Before delving into the details of our model, we briefly discuss the MPI representation

and its generation. The MPI representation introduced by Zhou et al. [216] expands a

2D RGB frame into a set of RGBA image planes, located at different depths. The alpha

channel (α ∈ [0, 1]) in each plane denotes occupancy of the scene at the corresponding

depth. Utilizing the knowledge of depth, we create the MPI directly from the RGB-D

image instead of estimating the MPI as is common in literature [96, 172, 216]. For the

given RGB-D image, we first sample Z planes uniformly in inverse depth between the

minimum and maximum depth of the scene. For every location x, we set α = 1 at the

plane nearest to the true depth of x and set α = 0 for the rest of the planes. Thus at
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Figure 6.2: Overall architecture of DeCOMPnet. The given past frames are first con-

verted to MPI and warped to the same camera view. 3D object motion is estimated

between the warped MPIs and extrapolated to predict the future object motion. Future

camera motion is incorporated to predict the total future motion, which is used to warp

the MPI of fn. The warped MPI is then infilled and alpha composited to obtain the

predicted future frame. For better visualization, inverse depth maps are shown.

each location x, the α values across all the planes form a one-hot vector. We modify

the MPI representation to contain true depth values in an additional channel along with

RGBA. We denote the MPI representation of fn as mn = {cn, dn, αn}, where cn, dn and

αn are the RGB, depth and alpha channels respectively. To warp an MPI to a different

camera view, we employ reprojection and bilinear splatting [79, 173] instead of inverse

homography employed by Zhou et al. [216]. Finally, to render a 2D frame from an MPI,

we use alpha compositing in back to front order using the standard over operation [216].

6.3.2 Overview of the Proposed Approach

We present our approach for predicting future frames of dynamic scenes using camera

motion knowledge as follows. For a scene with moving objects captured by a moving

camera, to explicitly use the available camera motion in predicting the next frame, we

adopt the following two-step approach. We first hold the camera still and account for

the object motion. We then keep objects still and account for the camera motion alone.

We use MPIs to represent the 3D scenes. Let k′ ∈ {1, 2, . . . , k−1} denote the prediction

timestep and ûl
n→n+k′(x, z) be the local optical flow in plane z ∈ {1, 2, . . . , Z} at location

x that describes the motion of the pixel from time instant n to n + k′ in view Tn. Let
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Pn→n+k′ be the pose-warping operator from view Tn to Tn+k′ that includes both the local

and global motion in the warping. Corresponding to the location (x, z) in mn such that

αn(x, z) = 1, we obtain the MPI m̂w
n+k′ of a future frame fn+k′ as

m̂w
n+k′(Pn→n+k′(x, ûl

n→n+k′(x, z), dn(x, z))) = mn(x, z), (6.1)

where the pose-warping operator Pn→n+k′ is defined as

Pn→n+k′(x, u, d) = KTn+k′T
−1
n (d+ uz)K

−1(x + uxy), (6.2)

where uxy and uz denote the components of flow in the x-y plane and in the depth

dimension respectively. Since Eq. (6.2) represents forward warping, to obtain the in-

tensities at integer locations of m̂w
n+k′ , we use splatting similar to [79, 173]. Along the

depth dimension, we simply select the nearest plane. We omit the conversion between

non-homogeneous and homogeneous coordinates for notation simplicity.

In Eq. (6.1), while the camera motion Pn→n+k′ is known, the object motion ûl
n→n+k′

is unknown and needs to be predicted. While warping mn to get m̂w
n+k′ using Eq. (6.1),

multiple locations from mn can map to a same location but different depth planes in

m̂w
n+k′ . Thus, for a few locations in m̂w

n+k′ across all the planes, there may be no matching

points in mn. Rendering such an MPI using alpha-compositing creates disocclusions or

holes. Hence, we infill the warped MPI m̂w
n+k′ to get m̂n+k′ before rendering the frame

f̂n+k′ . We summarize our approach in Fig. 6.2. In the following subsections, we present

the main challenges and our contributions in local motion prediction and briefly discuss

our disocclusion infilling module.

6.3.3 Local 3D Object Motion Prediction

We predict the 3D object motion ûl
n→n+k′ in view Tn by estimating the local motion

between mn and mn−k corresponding to fn and fn−k, and extrapolating it. We only

use the past ground truth frames to avoid the accumulation of errors. Since the motion



112 Chapter 6. DeCOMPnet

between fn and fn−k is a mixture of both global and local motion, the local motion

alone needs to be extracted from the overall motion. To achieve this, we first nullify

the global motion between the past frames by warping mn−k from view Tn−k to Tn to

get mw
n−k, using Eq. (6.2) by setting u = 0. Thus, the residual motion between mn and

mw
n−k corresponds to the object motion between time instants n and n− k. We estimate

the 3D optical flow between mn and mw
n−k to compute this local motion and use it to

predict ûl
n→n+k′ .

Past 3D flow estimation: Given the success of deep convolutional neural networks

for optical flow estimation, we explore such an approach to estimate the flow between

the MPI representations. We note that the flow estimation using deep neural networks

is more reliable here since the frames are captured from the same camera and contain

only small differences between the two. Nonetheless, we encounter two challenges while

estimating object motion between two MPIs. The first is that MPI representations are

inherently sparse, i.e. a significant number of pixels in MPIs have α = 0. We handle

the sparsity of MPIs by introducing 3D partial convolution layers, which convolve the

input only in the regions where α = 1. 2D partial convolutions were introduced by Liu

et al. [103] to infill holes in image inpainting applications. However, we apply partial

convolution in a completely different domain of estimating 3D optical flow with MPIs. In

this regard, we modify the partial convolution layer to not dilate the alpha mask at every

layer, since our work aims to estimate optical flow where α = 1. Estimating optical flow

typically requires computing a cost volume using a correlation layer [166]. We design

masked correlation layers to handle the sparsity of MPI while computing the 3D cost

volume. For input features h1, h2 along with corresponding alpha masks αh1 , αh2 , we

compute the cost volume and the corresponding alpha mask as

cv((x1, z1), (x2, z2)) = (h1(x1, z1)αh1(x1, z1))
T · (h2(x2, z2)αh2(x2, z2)), (6.3)

αcv((x1, z1), (x2, z2)) = αh1(x1, z1) · αh2(x2, z2). (6.4)

The above cost volume and mask are then fed to subsequent partial convolution layers
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to estimate the optical flow.

The second challenge is in representing the 3D flow due to the discrete nature of

depth planes in the MPI representation. We use real-valued displacements a ∈ R2 in

the x-y dimensions. In the depth dimension, we model the flow at location (x, z) as a

difference in the index of the planes in the MPI representation, from mn to mw
n−k. We

refer to this difference as z′, where z′ ∈ {−sz,−sz + 1, . . . , 0, . . . , sz − 1, sz} and 2sz+1 is

the size of the window around the plane z in the depth dimension. The network outputs

a probability distribution bz′ on the differences z′. Thus,

bz′(x, z) ∈ [0, 1] :
sz∑

z′=−sz

bz′(x, z) = 1 ∀(x, z). (6.5)

Implementing Eq. (6.1) requires a real-valued 3D flow vector, ul
n→n−k, which we compute

as

ul
n→n−k (x, z) =

(
a (x, z) ,

(
sz∑

z′=−sz

bz′ (x, z)d (z + z′)

)
− d(z)

)
∈ R3, (6.6)

where d (z) is the depth corresponding to the zth plane in the MPI.

We incorporate the above and design a multi-scale 3D flow estimation network using

PWC-Net [166] as the backbone architecture. PWC-Net consists of an encoder-decoder

style architecture, where optical flow is estimated in a coarse-to-fine manner. Specifi-

cally, we first obtain multi-scale 3D features of mn and mw
n−k using encoders at each

scale with 3D partial convolutions and downsampling layers consisting of strided con-

volutions. Since the number of MPI planes is much smaller than the resolution of the

other two spatial dimensions, we do not downsample/upsample the features along the

depth dimension. At the decoder in each scale except the lowest one, we upsample the

flow estimated by the previous scale. Using this flow, we warp the features of mw
n−k and

feed it to the masked correlation layers, along with the features of mn. The masked

correlation layers, as described in Eq. (6.3) and Eq. (6.4), output a cost volume which is

then processed by subsequent partial convolution layers to estimate the residual flow at
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that scale. We estimate the final flow at two scales lower than the original resolution and

upsample it by four times, as is popular in deep flow estimation models [166]. We train

the optical flow network FΘ, with trainable parameters Θ to estimate the flow from mn

to mw
n−k as

ul
n→n−k = FΘ(mn,m

w
n−k). (6.7)

Loss functions: We train the network FΘ in an unsupervised fashion with a linear

combination of photometric loss Lph and a smoothness loss Lsmooth. Specifically, we

warp mw
n−k using ul

n→n−k to reconstruct m̂n. Photometric loss is a combination of mean

absolute error (MAE) and structural similarity (SSIM) [190] as

Lph = β∥(mn − m̂n)⊙ on∥1 + (1− β)
1− SSIM(mn ⊙ on, m̂n ⊙ on)

2
, (6.8)

where, β is a scaling constant, on is the occlusion mask and ⊙ represents the element-wise

product. The MAE and SSIM losses are computed in each of the Z planes and averaged.

Unsupervised optical flow algorithms [120] compute photometric loss in the non-

occluded regions only using an occlusion mask on as in Eq. (6.8). The occlusion mask is

typically computed using forward-backward consistency of the optical flow. We instead

utilize the 3D representation of the scene and determine the occluded pixels as those

which are hidden after warping mn with ul
n→n−k. Mathematically, we forward-warp mn

using ul
n→n−k to get m̂n−k. We compute a visibility mask for m̂n−k as

v̂n−k(x, z) =
z−1∏
y=1

(1− α̂n−k(x, y)). (6.9)

We then backward-warp v̂n−k using ul
n→n−k to get v̂n. Finally, we compute the occlusion

mask as

on = 1{v̂n>0.5}. (6.10)
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A value of 0 in on indicates that the point is occluded. For the edge-aware smoothness

loss, along with gradients of RGB, we also use gradients of alpha channel to weigh the

smoothness term as

Lsmooth = (1−∇αn) · exp(−a · ∇cn) · ∇ul
n→n−k, (6.11)

where a is a scaling constant. Thus, our overall loss function is

Lof = Lph + λLsmooth. (6.12)

Future flow prediction: We employ a linear motion model [12, 13] to predict the

future flow as

ûl
n→n+k′(x, z) = −k′

k
ul
n→n−k(x, z). (6.13)

Thus, to predict the future local motion, we first isolate the local motion between the

past frames by nullifying the global motion between them and then estimate the local

motion as 3D optical flow between the MPIs of the past frames. We then extrapolate

the past motion to predict the future motion.

6.3.4 Disocclusion Infilling

As argued earlier, implementing Eq. (6.1) creates disocclusions. Hence we infill the

disoccluded regions in m̂w
n+k′ using an approach similar to the one used by Srinivasan et

al. [161]. We feed m̂w
n+k′ to a 3D U-Net and predict 2D infilling vectors in the disoccluded

regions that point to known regions in the same plane of MPI. We then infill the

disoccluded regions by copying the intensities and alpha from the locations pointed by

the predicted infilling vectors to obtain m̂n+k′ . Alpha-compositing m̂n+k′ generates the

predicted frame f̂n+k′ . We train the disocclusion infilling network with mean squared

error loss between the predicted frame f̂n+k′ and the true frame fn+k′ . We find that

the network fails to completely infill large disoccluded regions, leaving partially unfilled
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disoccluded regions. Hence, during inference, we iteratively infill the disoccluded regions

g times by recursively feeding the infilled MPI to the network.

6.4 Experiments

6.4.1 Datasets

Our Dataset: We develop a new dataset of videos with both camera and object motion

due to the lack of any large scale datasets suitable for evaluating temporal view synthesis

of dynamic scenes. We render the videos of our dataset with Blender using blend files

from blendswap [ble] and turbosquid [tur] and add camera and object motion to the

scenes. We add motion to the pre-existing scene objects or add new objects to the scene

and animate them. Our dataset contains 200 diverse scenes of indoor environments such

as hospital, kitchen, restaurant, and supermarket and outdoor environments like village,

poolside, street, lake and so on. The scenes contain various moving objects such as books,

chairs, tables, cars, airplanes, etc. For every scene, we generate four different camera

trajectories covering different parts of the scenes and different kinds of object motion.

Each sequence has 12 frames rendered at full HD resolution (1920 × 1080) and 30fps.

Thus, our dataset consists of 800 videos with 9600 frames in total. For every frame in

our dataset, we store the corresponding ground truth depth, camera pose, and camera

intrinsics. We use 135 scenes for training and 65 for testing.

MPI-Sintel: The MPI-Sintel dataset [26], which is widely used for evaluating optical

flow estimation algorithms, contains both camera and object movement and also provides

the ground truth depth and camera poses. Thus, it can be used to evaluate temporal

view synthesis models. Since the required ground truth is provided for the train set only,

we further divide the train set into train and test sets. The videos have a resolution of

1024 × 436 at 24 frames per second. We use 13 scenes for training and 10 scenes for

testing.

We experiment on synthetic datasets only and not on real world datasets since our
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problem formulation is motivated by use-cases in increasing the frame rate for graphical

rendering. Thus, we assume that the depth is available.

6.4.2 Comparisons

We compare our model against a combination of video prediction and view synthesis

models. We use MCnet [180], a popular video prediction model, PreCNet [164], a recent

model based on predictive coding and DPG [58], a model based on flow prediction and

disocclusion infilling. For all the models, we use four past frames. Therefore, the predic-

tion of first few frames uses the true past frames and the subsequent predictions use the

previously predicted frames.

Since the above methods do not make use of camera motion, we combine these video

prediction models with a recent view synthesis model, SynSin [193]. We first incorporate

the camera motion by warping the past frames fn, fn−1, fn−2 and fn−3 to the view of

fn+1 using SynSin. We use the ablation model of SynSin, which uses true depth of the

past frames. We then use video prediction models such as MCnet, DPG, or PreCNet

on these warped frames to account for local motion and predict the desired frame. In

order to guage the performance capability of this approach, we feed the warped fn−1 and

fn−3 to the video prediction model, although these are not available during frame rate

upsampling.

We implement DPG ourselves and train the model on 256 × 256 patches on both

datasets. For MCnet, PreCNet, and SynSin, we use the code and pretrained models

provided by the authors and finetune them on both datasets. We test both the pretrained

and the finetuned models and report the best performance.

Implementation details: We train the optical flow estimation network FΘ and the

disocclusion infilling network separately due to GPU memory constraints. We initialize

our flow estimation network using pretrained weights provided by ARFlow [105] and

finetune it on the respective datasets. We modify the pretrained weights appropriately

to work for 3D convolutions. We train both the networks for 10000 iterations with

patches of size 256 × 256 and a batch size of 4. We set the hyper-parameters as sz =



118 Chapter 6. DeCOMPnet

Table 6.1: Quantitative comparison of different models on ours and MPI Sintel datasets

for single frame prediction. Models indicated with ∗ are a combination of view synthesis

and video prediction models, that we design.

Our Dataset MPI Sintel

Model PSNR ↑ SSIM ↑ LPIPS ↓ ST-RRED ↓ PSNR ↑ SSIM ↑ LPIPS ↓ ST-RRED ↓

MCnet [180] 24.66 0.7813 0.2406 207 24.00 0.7511 0.2230 530

DPG [58] 28.24 0.8634 0.1091 71 20.00 0.6385 0.3056 1129

PreCNet [164] 24.86 0.8191 0.2409 244 25.60 0.7952 0.2463 571

SynSin [193] + MCnet∗ 26.87 0.8254 0.1567 92 25.67 0.8031 0.1639 315

SynSin + DPG∗ 27.30 0.8461 0.1268 74 23.77 0.7795 0.2520 600

SynSin + PreCNet∗ 26.81 0.8432 0.1508 100 25.92 0.8205 0.1581 330

DeCOMPnet 30.60 0.9314 0.0634 28 29.64 0.8975 0.1032 259

1, Z = 4, β = 0.15, a = 10, λ = 10, g = 3.

Evaluation Measures: We evaluate the predicted frames using various image

quality measures such as peak signal-to-noise ratio (PSNR), structural similarity index

(SSIM) [190] and LPIPS [215]. Further, since image quality measures do not evaluate

temporal quality, we also employ a video quality assessment measure, ST-RRED [160]

that measures both the spatial and temporal quality of the predicted frames. Since the

focus of this work is not on predicting new regions entering the scene, we crop out 40

pixels on the top and bottom of the frames and 60 pixels on the left and right sides of

the frames before evaluating the predictions.

6.4.3 Single Frame Prediction

In single frame prediction, the goal is to predict every alternate frame and this can be

studied by setting k = 2 in our problem definition. Specifically, to predict f̂n+1, we use

fn and fn−2.

We first present examples of a few future frame predictions by DeCOMPnet and

visualizations of outputs of various stages in our framework in Fig. 6.3. In particular, we

show the outputs after predicting the object motion alone, f̃w
n+1, and after incorporating

the global motion. Since such outputs are in the MPI representation space, we use
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Figure 6.3: Visualization of outputs of various stages in our framework: Each row shows

a different sample. The first column shows the full resolution frame and the subsequent

columns show an enlarged region of a cropped region. The second and third columns show

past frames after camera motion compensation. The fourth and fifth columns show the

frame after predicting local and global motion respectively, which contain disocclusions

(shown in black). The sixth column shows the result after infilling and the last column

shows the true frame.

Figure 6.4: Qualitative comparisons on our dataset for single frame prediction. The

first column shows a predicted frame by our model, DeCOMPnet, and the subsequent

columns show enlarged versions of a cropped region for different models. The frames

with green border are graphically rendered, and those with red border are predicted by

different models. In the scene in the first row, the pillows along with the bed are moving

towards the camera. The car is moving left in the second scene. All scenes have camera

motion in addition to object motion. We observe that other models fail to produce sharp

predictions or retain the object shape, whereas our model has retained the shape and

textures.
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Figure 6.5: Qualitative comparisons on the MPI Sintel dataset for single frame prediction.

The fingers are moving up in the first scene, and the girl is moving to the right in the

second scene. We observe that our model has retained the shape of the objects, which

the other models fail to.

alpha-compositing to obtain the corresponding images.

We compare the quantitative results of DeCOMPnet against the competing methods

in Tab. 6.1. Our model outperforms all the competing methods in terms of all the

quality measures. The relatively lower ST-RRED scores for DeCOMPnet indicate that

the predictions by our model are superior in temporal quality. We observe that most

models perform better on our dataset than on the MPI-Sintel dataset in general. This

may be because the MPI-Sintel dataset has complex motion to make it challenging for

optical flow estimation, making it even more challenging for prediction. We also observe

that combining SynSin with video prediction models improves their performances, except

for DPG on our dataset. Since DPG is performing reasonably well, when combined

with SynSin, the artifacts introduced by SynSin may lead to a decrease in performance.

However, on the MPI-Sintel dataset, since the performance of DPG is lower, it benefits

from using SynSin. Further, we note that even though the combination of view synthesis

and video prediction models use the knowledge of the true frames fn−1 and fn−3 which

are not available at test time, our model still shows superior performance.

We show the qualitative results of our model and the benchmarked models in Fig. 6.4

and Fig. 6.5. While other models introduce artifacts such as blur or distortions in the

shape and texture of objects, DeCOMPnet predicts the future frame reasonably well.

To notice the temporal superiority of our model, view the supplementary videos on our
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Figure 6.6: Multi frame predictions by DeCOMPnet. The first column shows fn at full

resolution and the subsequent columns focus on a cropped region of fn−5, fn and the four

predicted frames. The last column shows fn+5 for reference.

project webpage1.

6.4.4 Multi Frame Prediction

We now analyze the ability of our model to predict multiple frames into the future. In

particular, we study frame-rate upsampling by a factor of five times by setting k = 5.

In our framework, we estimate the object motion ul
n→n−5 only once, and compute the

predicted motion for each of the future time steps using Eq. (6.13). We then use Eq. (6.1)

to warp mn to m̂w
n+1, m̂

w
n+2, m̂

w
n+3 and m̂w

n+4, which are then infilled and alpha composited

to predict the future frames. For the benchmark comparison models, fn, fn−1, fn−2 and

fn−3 are used to predict f̂n+1. Thus, compared to our model, the benchmarked models

have the additional knowledge of fn−1, fn−2 and fn−3. Although, these frames are not

available in practice, the goal of this experiment is to analyze the performance of this

approach.

Fig. 6.6 compares example multi-frame predictions by DeCOMPnet with DPG and

Fig. 6.7 shows average PSNR and SSIM for different models. We observe that DeCOMP-

net outperforms all the competing models in terms of SSIM. In terms of PSNR, we are

competitive with DPG in the prediction of f̂n+1 on our dataset, despite DPG addition-

ally using fn−1, fn−2 and fn−3. Further, DPG predictions are often blurry, which is not

1https://nagabhushansn95.github.io/publications/2022/DeCOMPnet.html
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Figure 6.7: Quantitative comparison of the proposed DeCOMPnet against competing

methods for multi frame prediction. The plots show average quality score for the pre-

dicted frames f̂n+1, f̂n+2, f̂n+3 and f̂n+4.
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Table 6.2: Comparison of average endpoint error for the flows predicted by different

ablated models, for single frame prediction.

Model Endpoint Error

2D Flow 2.8

3D Flow w/o p-conv and mask-corr 2.0

3D Flow 1.7

captured well by PSNR.

6.4.5 Ablations

2D vs 3D Flow Prediction: We compare our 3D flow prediction model against a 2D

flow model by predicting 2D flow between the frames fn and fw
n−2. We use a model similar

to the one described in Sec. 6.3.3 on frames with 2D convolutions and cost volumes. Note

that this model still uses partial convolutions and masked correlation layers to handle

holes in fw
n−2. We also feed depth as input to the flow estimation network for a fair

comparison. Owing to different ranges of depth across multiple scenes, we first normalize

depth to the range [0, 1], and then feed it to the flow estimation network. While the 2D

model uses depth naively by concatenating depth with the input in an additional channel,

the 3D model uses a more structured MPI representation. This comparison allows us to

analyse the importance of using MPIs for flow estimation.

We evaluate the flows predicted by 2D and 3D models using average endpoint er-

ror (AEPE) [105] for single frame prediction. For the test scenes in our dataset, we

additionally render the optical flow corresponding to object motion alone and use it to

compute the endpoint errors. Even though our model predicts 3D flow, we use the x-y

components only to compute the AEPE. As argued earlier, estimating the object motion

in 3D allows better matching of points, leading to a more accurate estimation of flow,

even in x-y dimensions.

From Tab. 6.2, we observe that estimating the flow in 3D using MPI reduces AEPE
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Figure 6.8: Qualitative comparison of 2D and 3D flow estimations for single frame predic-

tion. The second and third columns show the input frames fn, fw
n−2 to the flow estimation

networks. Fourth, fifth and sixth columns visualize the x-y component of flows predicted

by the models and the ground truth flow. The next three columns show the correspond-

ing frames f̃w
n+1 reconstructed by applying local flow ûl

n→n+1 on fn. Notice the sharpness

of 3D flow and the distortions in the background of the frame reconstructed with 2D

flow as pointed by the blue arrow. Disoccluded regions are shown in black. Here we only

visualize object motion prediction and do not show the final predicted frame. Global

motion and infilling need to be applied on top of f̃w
n+1 as shown in Fig. 6.3 to obtain

f̂n+1. Optical flow visualization is similar to Baker et al. [10].
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Table 6.3: Performance bound analysis of different components of our model for single

frame prediction. LMP: Local motion prediction; DI: Disocclusion infilling. Pred indi-

cates flow prediction or infilling done by the network. GT indicates ground truth flow

or infilling.

LMP DI
Our Dataset MPI Sintel

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

pred pred 30.60 0.9314 29.64 0.8975

GT pred 30.67 0.9354 31.90 0.9426

pred GT 32.00 0.9377 30.35 0.9097

GT GT 33.53 0.9453 34.02 0.9613

by 38%. Further, we observe in Fig. 6.8 that the flow predicted by our 3D model is

sharper leading to undistorted reconstructions at the edges, in contrast to 2D flow.

Impact of partial convolutions and masked correlations: We study the impact

of the partial convolution and masked correlation layers in DeCOMPnet by replacing

them with standard 3D convolution and correlation layers. We evaluate the performance

of object motion prediction using AEPE in Tab. 6.2. We observe that the proposed

masked correlations and the use of partial convolutions to handle the sparsity in MPI

representation lead to a significant improvement in the performance of object motion

prediction.

6.4.6 Analysis of Performance Bounds

We now analyze the upper bound on the performance of our model components for single

frame prediction. We establish an upper bound on the performance that can be achieved

by improving the object motion prediction by replacing the predicted total motion with

the true optical flow provided by the graphics renderer. We warp fn with the ground

truth optical flow to get f̂w
n+1 and then create m̂w

n+1 as explained in Sec. 6.3.1, which is

then fed to the disocclusion infilling module. To upper bound the performance that can
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be achieved by improving the disocclusion infilling, we apply alpha compositing on m̂w
n+1

and replace the disoccluded regions with true intensities from fn+1. We also obtain a

joint bound using both true optical flow and infilling with true intensities.

We see from Tab. 6.3 that the performance of our model is close to the upper bound on

our dataset. The larger gap in the MPI-Sintel database could be attributed to the chal-

lenging motion trajectories. The non-perfect reconstruction performance of the bound

in the last row of Tab. 6.3 may be due to splatting approximations in warping.

6.4.7 Timing Analysis

Our model takes 4.5s to predict a single full HD frame on an Intel Core i7-9700F CPU

with 32GB RAM and NVIDIA RTX 2080 Ti GPU, whereas Blender typically takes about

5m-1h to render a single frame depending on the scene. On further analysis, we find that

the convolutional layers in optical flow estimation and disocclusion infilling take about

70ms and 3ms, respectively. Thus a significant amount of time in our implementation is

consumed by warping operations. However, it is possible to optimize warping as shown

by Barnes et al. [15] and Waveren et al. [177], which use less than 10ms. Further, due to

the sparsity of the MPI representation, at any given location, alpha will be 0 on Z − 1

planes. Although we ignore convolution layer outputs at locations where α = 0, inference

time can be further reduced by Z times by not convolving such points. With the above

optimizations, the inference time of our model could reduce to less than 33ms, making

it feasible for real-time use.

6.5 Summary

In this chapter, we propose a novel framework for temporal view synthesis of dynamic

scenes in the context of causal frame-rate upsampling of videos. We account for camera

and object motion sequentially, which allows our framework to exploit the availability

of camera motion effectively. Further, we estimate and predict object motion in the 3D

MPI representation using masked correlations and partial convolutions. Finally, we infill
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disocclusions in the warped MPIs and use alpha-compositing to render the predicted

frames. To evaluate our model, we develop a new dataset that brings out the challenges

in temporal view synthesis.
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Conclusion

In this thesis, we present several sparse input novel view synthesis algorithms for both

static and dynamic scenes. To train NeRFs effectively for sparse input view synthesis,

we first propose the visibility prior that is related to the relative depth of the objects in

the scene. We compute the visibility prior using plane sweep volumes without the need

to train a neural network on large datasets. We show that the visibility prior is dense

and more reliable than existing priors on absolute depth, thereby providing better prior

to the sparse input NeRF. For effective imposition of the visibility prior, we reformulate

the NeRF representation and show that our model outperforms existing approaches on

popular datasets.

To further improve the priors, we explore the use of augmented models to obtain

dense depth supervision that does not suffer from generalization issues. We design the

augmented models by reducing the capability of the NeRF. This reduced capability

NeRF predicts only simpler solutions and provides better depth supervision in certain

regions of the scene. We ensure that our dense depth priors do not suffer from gen-

eralization issues by training these augmented models on the given scene alone and in

tandem with the main NeRF. Further, we show that our framework of learning simpler

solutions is not only applicable to implicit models such as NeRF but also to newer and

faster radiance field models like TensoRF and ZipNeRF. Through extensive experiments

on four different datasets, we show that our Simple-RF family of models significantly

128
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improve the performance of their respective base models, as well as prior works, in sparse

input novel view synthesis of static scenes.

For novel view synthesis of dynamic scenes, we design a compact motion model

based on factorized volumes that optimizes quickly and is amenable to be regularized

with motion priors in the sparse input setting. We introduce reliable sparse flow priors

based on robust SIFT feature matching to constrain the motion field, since we find that

the popularly employed dense optical flow priors are unreliable. We show the benefits of

our approach in sparse input settings, where our motion representation, along with our

priors, outperform prior works significantly.

Finally, we study the application of view synthesis for frame rate upsampling in video

gaming applications. We utilize the available scene depth in such synthetic rendering

settings to isolate the object motion from the camera motion in the given past frames.

Since the object motion in 2D is noisy and unreliable due to disocclusions, we present

an approach to estimate the object motion in 3D. Specifically, we employ the multi-

plane images to represent the scene in 3D and design a deep flow estimation network

to estimate the object motion in 3D. In particular, we show that the use of MPIs for

motion estimation significantly improves the view synthesis performance.

In all the above work, we consider the applications where camera parameters are

known exactly. In the future, it might be interesting to consider the case where the cam-

era parameters are not known exactly and are optimized jointly with the scene represen-

tation. While such frameworks are studied in the dense input setting [131], achieving the

same in sparse input setting is non-trivial and requires a careful investigation. Specific

to the multi-view dynamic scene novel view synthesis, we assume that the cameras are

temporally synchronized. Handling multi-view videos with small temporal shifts could

enable wider application of the proposed methods. In this thesis, we consider datasets

that have uniform lighting across all the views. However, in some applications [116], the

lighting conditions might vary across the views. It would be interesting to design regu-

larizations to train the radiance fields in such extreme conditions. Finally, we operate

in the setting where the input views are fixed, and we try to maximize the quality of
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the synthesized novel views. In many practical applications, it might be more useful to

determine the number of input views required and the optimal position of cameras to

achieve a certain target quality of novel views.
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